977 resultados para 2-Hydroxy-4-methoxyacetophenone-N4,
Resumo:
Semicarbazones and their transition metal complexes have been receiving considerable attention because of their biological relevance and applications in the field of analysis and in the field of organic NLO materials. Their structural diversity also attracted inorganic chemists. A good deal of work has been reported on the synthesis and structural investigation of semicarbazones and their complexes. This is due partially to their capability of acting as multidentate, NO, NNO, ONO and ONNO donors with the formation of either mono or bi or polynuclear complexes. Their chemistry and pharmacological applications have been extensively investigated. Appreciable biological applications as well as diverse stereochemistry of their metal complexes prompted us to synthesize two new tridentate ONO donor N4-phenyl semicarbazones derived from 2-hydroxy-4-methoxyacetophenone and 2-hydroxy-4-methoxybenzophenone and their transition metal complexes. These ketones were selected since they can provide a further binding site from phenolic–OH and can thus increase the denticity. Introduction of heterocyclic bases like 1,10-phenanthroline, 2,2′-bipyridine, 4,4′-dimethyl- 2,2′-bipyridine and 4-picoline and some pseudohalides like azide and thiocyanate ion can result in mixed ligand metal chelates with different geometries in coordination compounds In the present study, oxovanadium(IV), manganese(II), cobalt (II/III), nickel(II), copper(II) and zinc(II) complexes of 2-hydroxy-4- methoxyacetophenone-N4-phenylsemicarbazone (H2ASC) and 2-hydroxy-4- methoxybenzophenone-N4-phenylsemicarbazone (H2BSC) were synthesized and characterized.
Resumo:
Sixteen multiparous Holstein cows were used to determine the effects of 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi: 0 vs. 1.26 g/kg of total ration dry matter (DM) and dietary crude protein (CP) concentration [14.7% (low) vs. 16.9% (standard), DM basis] on milk yield and composition using a replicated 4 x 4 Latin square design experiment with 4-wk periods. Cows were fed ad libitum a total mixed ration with a 1: 1 forage-to-concentrate ratio (DM basis), and diets provided an estimated 6.71 and 1.86% lysine and methionine, respectively, in metabolizable protein for the low-protein diet and 6.74 and 1.82% in the standard protein diet. Dry matter intake, milk yield, and composition were measured during wk 4 of each period. There were no effects on DM intake, which averaged 24.7 kg/d. There was an interaction between dietary CP and HMBi for milk yield and 3.5% fat-corrected milk (FCM). Feeding HMBi decreased milk and FCM yield when fed with the low-CP diet but did not affect milk or FCM yield when fed with the standard CP diet. Feeding HMBi increased milk protein concentration regardless of diet CP concentration and increased milk protein yield when added to the standard CP diet but not the low-CP diet. The positive effect of HMBi on milk protein yield was only observed at the standard level of dietary CP, suggesting other factors limited the response to HMBi when dietary protein supply was restricted.
Resumo:
The aim of this work was to evaluate the effect of the storage time on the thermal properties of triethylene glycol dimethacrylate/2,2-bis[4-(2-hydroxy-3-methacryloxy-prop-1-oxy)-phenyl]propane bisphenyl-alpha-glycidyl ether dimethacrylate (TB) copolymers used in formulations of dental resins after photopolymerization. The TB copolymers were prepared by photopolymerization with an Ultrablue IS light-emitting diode, stored in the dark for 160 days at 37 degrees C, and characterized with differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared spectroscopy with attenuated total reflection. DSC curves indicated the presence of an exothermic peak, confirming that the reaction was not completed during the photopolymerization process. This exothermic peak became smaller as a function of the storage time and was shifted at higher temperatures. In DMA studies, a plot of the loss tangent versus the temperature initially showed the presence of two well-defined peaks. The presence of both peaks confirmed the presence of residual monomers that were not converted during the photopolymerization process. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 112: 679-684, 2009
Resumo:
The maturation of Madeira wines usually involves exposure to relatively high temperatures and humidity levels >70%, which affect the aroma and flavor composition and lead to the formation of the typical and characteristic bouquet of these wines. To estimate the levels of sotolon [3-hydroxy4,5-dimethyl-2(5 H )-furanone] and their behavior over time, 86 aged Madeira wines samples (1-25 years old), with different sugar concentrations, respectively, 90 g L-1 for Boal, 110 g L-1 for Malvazia, 25 g L -1 for Sercial, and 65 g L-1 for Verdelho varieties, were analyzed. Isolation was performed by liquid-liquid extraction with dichloromethane followed by chromatographic analysis by GC-MS. The reproducibility of the method was found to be 4.9%. The detection and quantification limits were 1.2 and 2.0 µgL-1, respectively. The levels of sotolon found ranged from not detected to 2000 µgL-1 for wines between 1 and 25 years old. It was observed that during aging, the concentration of sotolon increased with time in a linear fashion ( r ) 0.917). The highest concentration of sotolon was found in wines with the highest residual sugar contents, considering the same time of storage. The results show that there is a strong correlation between sotolon and sugar derivatives: furfural, 5-methylfurfural, 5-hydroxymethylfurfural, and 5-ethoxymethylfurfural. These compounds are also well correlated with wine aging. These findings indicate that the kinetics of sotolon formation is closely related with residual sugar contents, suggesting that this molecule may come from a component like sugar.
Resumo:
In order to understand the influence of alkyl side chains on the gas-phase reactivity of 1,4-naphthoquinone derivatives, some 2-hydroxy-1,4-naphthoquinone derivatives have been prepared and studied by electrospray ionization tandem mass spectrometry in combination with computational quantum chemistry calculations. Protonation and deprotonation sites were suggested on the basis of gas-phase basicity, proton affinity, gas-phase acidity (?Gacid), atomic charges and frontier orbital analyses. The nature of the intramolecular interaction as well as of the hydrogen bond in the systems was investigated by the atoms-in-molecules theory and the natural bond orbital analysis. The results were compared with data published for lapachol (2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone). For the protonated molecules, water elimination was verified to occur at lower proportion when compared with side chain elimination, as evidenced in earlier studies on lapachol. The side chain at position C(3) was found to play important roles in the fragmentation mechanisms of these compounds. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 muM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 muM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 muM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 muM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.
Resumo:
Plants differ greatly in their susceptibility to insect herbivory, suggesting both local adaptation and resistance tradeoffs. We used maize (Zea mays) recombinant inbred lines to map a quantitative trait locus (QTL) for the maize leaf aphid (Rhopalosiphum maidis) susceptibility to maize Chromosome 1. Phytochemical analysis revealed that the same locus was also associated with high levels of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) and low levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc). In vitro enzyme assays with candidate genes from the region of the QTL identified three O-methyltransferases (Bx10a-c) that convert DIMBOA-Glc to HDMBOA-Glc. Variation in HDMBOA-Glc production was attributed to a natural CACTA family transposon insertion that inactivates Bx10c in maize lines with low HDMBOA-Glc accumulation. When tested with a population of 26 diverse maize inbred lines, R. maidis produced more progeny on those with high HDMBOA-Glc and low DIMBOA-Glc. Although HDMBOA-Glc was more toxic to R. maidis than DIMBOA-Glc in vitro, BX10c activity and the resulting decline of DIMBOA-Glc upon methylation to HDMBOA-Glc were associated with reduced callose deposition as an aphid defense response in vivo. Thus, a natural transposon insertion appears to mediate an ecologically relevant trade-off between the direct toxicity and defense-inducing properties of maize benzoxazinoids.
Resumo:
Agents that damage DNA in Escherichia coli or interfere with its replication induce DNA repair and mutagenesis via the SOS response. This well-known activity is regulated by the RecA protein and the LexA repressor. Following repair or bypass of the DNA lesion, the cell returns to its resting state by a largely unknown process. We found that 2-keto-4-hydroxyglutarate aldolase (4-hydroxy-2-oxoglutarate aldolase; EC 4.1.3.16) is necessary for the recovery of respiration and that it is regulated by the SOS response. This protein was induced by DNA-damaging agents. Induction required RecA activation. When the LexA regulon was repressed, activation of RecA was not sufficient for induction, indicating the requirement for an additional protein under LexA control. Finally, a mutant in the corresponding hga gene was UV sensitive. 2-Keto-4-hydroxyglutarate aldolase also plays a role in respiratory metabolic pathways, which suggests a mechanism for respiration resumption during the termination of the SOS response.
Resumo:
In this work we have studied cyclooctene epoxidation with PhIO, using a new iron porphyrin, 5,10,15,20-tetrakis(2-hydroxy-5-nitrophenyl)porphyrinato iron(III), supported on silica matrices via eletrostatic interaction and / or covalent bonds as catalyst. These catalysts were obtained and immobilized on the solid supports propyltrimethylammonium silica (SiN+); propyltrimethylammonium and propylimidazole silica [SiN+(IPG)] and chloropropylsilica (CPS) via elestrostatic interactions and covalent binding. Characterization of the supported catalysts by UV-Vis spectroscopy and EPR (Electron paramagnetic resonance) indicated the presence of a mixture of FeII and FeIII species in all of the three obtained catalysts. In the case of (Z)-cyclooctene epoxidation by PhIO the yields observed for cis-epoxycyclooctane were satisfactory for the reactions catalyzed by the three materials (ranging from 68% to 85%). Such results indicate that immobilization of metalloporphyrins onto solid supports via groups localized on the ortho positions of their mesophenyl rings can lead to efficient catalysts for epoxidation reactions. The catalyst 1-CPS is less active than 1-SiN and 1-SiN(IPG), this argues in favour of the immobilization of this metalloporphyrin onto solids via electrostatic interactions, which is easier to achieve and results in more active oxidation catalysts. Interestingly, the activity of the supported catalysts remained the same even after three successive recyclings; therefore, they are stable under the oxidizing conditions.
Resumo:
The tetrahydropyrimidinone ring in the title compound, C(20)H(20)N(2)O(2), is in a half-boat conformation with the N-C-N C atom 0.580 (2) angstrom out of the plane defined by the remaining five atoms. In the crystal structure, molecules are connected into centrosymmetric dimers via N-H center dot center dot center dot O interactions. The dimeric aggregates are linked into supramolecular chains along the a axis via C-H center dot center dot center dot pi interactions.
Resumo:
Monocarboxylate transporters (MCTs) are important cellular pH regulators in cancer cells; however, the value of MCT expression in cancer is still poorly understood. In the present study, we analysed MCT1, MCT2, and MCT4 protein expression in breast, colon, lung, and ovary neoplasms, as well as CD147 and CD44. MCT expression frequency was high and heterogeneous among the different tumours. Comparing with normal tissues, there was an increase in MCT1 and MCT4 expressions in breast carcinoma and a decrease in MCT4 plasma membrane expression in lung cancer. There were associations between CD147 and MCT1 expressions in ovarian cancer as well as between CD147 and MCT4 in both breast and lung cancers. CD44 was only associated with MCT1 plasma membrane expression in lung cancer. An important number of MCT1 positive cases are negative for both chaperones, suggesting that MCT plasma membrane expression in tumours may depend on a yet nonidentified regulatory protein.
Resumo:
In the title compound, C(12)H(22)O(2), the 4-methyltetrahydropyran-4-ol ring adopts a conformation close to that of a chair and with the two O atoms syn; the cyclohexyl group occupies an equatorial position and adopts a chair conformation. In the crystal packing, supramolecular chains along the b axis are sustained by O-H center dot center dot center dot O hydrogen bonds. These are connected into undulating layers in the ab plane by C-H center dot center dot center dot O interactions.
Resumo:
The 1,3,4-oxadiazinan-2-one ring in the title compound, C(12)H(13)ClN(2)O(3), is in a distorted half-chair conformation. The phenyl and chloroacetyl groups occupy axial and equatorial positions, respectively, and lie to the opposite side of the molecule to the N-bound methyl substituent. Molecules are consolidated in the crystal structure by C-H center dot center dot center dot O interactions.
Resumo:
In the present work we investigated the electrochemical behavior of PVA on polycrystalline Pt and single-crystal Pt electrodes. PVA hampered the characteristic hydrogen UPD and anion adsorption on all investigated surfaces, with the processes on Pt(110) being the most affected by the PVA presence. Several oxidation waves appeared as the potential was swept in the positive direction and the Pt(111) was found to be the most active for the oxidation processes. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3615965] All rights reserved.