998 resultados para 2-BUTENE
Resumo:
The mechanism of devulcanization of sulfur-vulcanized natural rubber with aromatic disulfides and aliphatic amines has been studied using 23-dimethyl-2-butene (C5H1,) as a low-molecular weight model compound. First C6H12 was vulcanized with a mixture of sulfur, zinc stearate and N-cyclohexyl-2-benzothiazylsulfenamide (CBS) as accelerator at 140 °C, resulting in a mixture of addition products (C(,H 1 i-S,-C5H 1 i ). The compounds were isolated and identified by High Performance Liquid Chromatography (HPLC) with respect to their various sulfur ranks. In it second stage, the vulcanized products were devulcanized using the agents mentioned above at 200 °C. The kinetics and chemistry of the breakdown of the sulfur-hridges were monitored. Both devulcanization agents decompose sulfidic vulcanization products with sulfur ranks equal or higher than 3 quite effectively and with comparable speed. Di phenyldisulfide as devulcanization agent gives rise to a high amount of mono- and disulfidic compounds formed during the devulcanization, hexadecylamine, as devulcanization agent, prevents these lower sulfur ranks from being formed.
Resumo:
A zirconium-based Ziegler-Natta catalytic system has been tested in the dimerization of 1-butene. It was found that the concentration of Et2AlCl, Ph3P and PhONa as well as the reaction temperature had great influences on the activity and selectivity of the catalyst. Under the optimum reaction conditions, the conversion of 1-butene is 91.9%, and the selectivity of dimers is 76.7%. Basic ligands such as Ph3P and PhONa can inhibit isomerization of 1-butene to 2-butene effectively. In addition, the metal hydride mechanism was also suggested and some indirect evidence was obtained in favor of this mechanism.
Resumo:
A series of strong solid acids composed of WO3/ZrO2 were prepared. Their crystal structure, surface state, and acidity were determined by the methods of X-ray diffraction, thermal gravimetric and differential thermal analysis, temperature-programmed reduction, laser Raman, and acidity measurement. The results revealed that ZrO2 in WO3/ZrO2 existed mainly in the tetragonal phase, the addition of WO3 plays an important role in stabilizing the tetragonal phase of ZrO2, and all of the samples possessed large surface areas. WO3 in WO3/ZrO2 is mainly monolayer dispersed, and a small amount crystallized on the ZrO2 surface and partly reacted with ZrO2 to form the bond of Zr-O-W, acting as the strong solid acid center. The catalytic properties of WO3/ZrO2 strong solid;acids for alkylation of isobutane with butene at different conditions were investigated. They had a better reaction performance than other strong solid acids; a parallel relationship could be drawn between the catalytic activity and the acid amounts as well as the acidic strength of the catalysts.
Resumo:
Catalysts consisting of heteropoly acids (HPAs) supported on different silica and mesoporous molecular sieves have been prepared by impregnation and the sol-gel method, respectively, and their catalytic behavior in fixed-bed alkylation of isobutane with butene has been investigated. The activity, selectivity and stability of the supported-HPA catalysts could be correlated with the surface acidity of the catalysts, the structure of supports as well as the time on stream (TOS). In the fixed-bed reactor, the acidity of the heteropoly acid is favorable to the formation of dimerization products (C-8(=)); especially, the pore size of supports was seen to have an important effect on activity and product distribution of the catalysts. Contrary to the traditional solid-acid catalysts, the supported-HPA catalysts own an excellent stability for alkylation, which makes it possible for these supported catalysts to replace the liquid-acid catalysts used in industry.
Resumo:
A simple model potential is used to calculate Rydberg series for the molecules: nitrogen, oxygen, nitric oxide, carbon monoxide, carbon dioxide, nitrogen dioxide, nitrous oxide, acetylene, formaldehyde, formic acid, diazomethane, ketene, ethylene, allene, acetaldehyde, propyne, acrolein, dimethyl ether, 1, 3-butadiene, 2-butene, and benzene. The model potential for a molecule is taken as the sum of atomic potentials, which are calibrated to atomic data and contain no further parameters. Our results agree with experimentally measured values to within 5-10% in all cases. The results of these calculations are applied to many unresolved problems connected with the above molecules. Some of the more notable of these problems are the reassignment of states in carbon monoxide, the first ionization potential of nitrogen dioxide, the interpretation of the V state in ethylene, and the mystery bands in substituted ethylenes, the identification of the R and R’ series in benzene and the determination of the orbital scheme in benzene from electron impact data.
Resumo:
C2-C8 hydrocarbon concentrations (about 35 compounds identified, including saturated, aromatic, and olefinic compounds) from 38 shipboard sealed, deep-frozen core samples of Deep Sea Drilling Project Sites 585 (East Mariana Basin) and 586 (Ontong-Java Plateau) were determined by a gas stripping-thermovaporization method. Total concentrations, which represent the hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces of the sediment, vary from 20 to 630 ng/g of rock at Site 585 (sub-bottom depth range 332-868 m). Likewise, organic-carbon normalized yields range from 3*10**4 to 9*10**5 ng/g Corg, indicating that the organic matter is still in the initial, diagenetic evolutionary stage. The highest value (based on both rock weight and organic carbon) is measured in an extremely organic-carbon-poor sample of Lithologic Subunit VB (Core 585-30). In this unit (504-550 m) several samples with elevated organic-carbon contents and favorable kerogen quality including two thin "black-shale" layers deposited at the Cenomanian/Turonian boundary (not sampled for this study) were encountered. We conclude from a detailed comparison of light hydrocarbon compositions that the Core 585-30 sample is enriched in hydrocarbons of the C2-C8 molecular range, particularly in gas compounds, which probably migrated from nearby black-shale source layers. C2-C8 hydrocarbon yields in Site 586 samples (sub-bottom depth range 27-298 m) did not exceed 118 ng/g of dry sediment weight (average 56 ng/g), indicating the immaturity of these samples.
Resumo:
A series of C2-C8 hydrocarbons (including saturated, aromatic, and olefinic compounds) from deep-frozen core samples taken during DSDP Leg 75 (Holes 530A and 532) were analyzed by a combined hydrogen-stripping/thermovaporization method. Concentrations representing both hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces vary in Hole 530A from about 10 to 15,000 ng/g of dry sediment weight depending on the lithology (organic-carbon-lean calcareous oozes versus "black shales"). Likewise, the organic-carbon-normalized C2-C8 hydrocarbon concentrations vary from 3,500 to 93,100 ng/g Corg, reflecting drastic differences in the hydrogen contents and hence the hydrocarbon potential of the kerogens. The highest concentrations measured of nearly 10**5 ng/g Corg are about two orders of magnitude below those usually encountered in Type-II kerogen-bearing source beds in the main phase of petroleum generation. Therefore, it was concluded that Hole 530A sediments, even at 1100 m depth, are in an early stage of evolution. The corresponding data from Hole 532 indicated lower amounts (3,000-9,000 ng/g Corg), which is in accordance with the shallow burial depth and immaturity of these Pliocene/late Miocene sediments. Significant changes in the light hydrocarbon composition with depth were attributed either to changes in kerogen type or to maturity related effects. Redistribution pheonomena, possibly the result of diffusion, were recognized only sporadically in Hole 530A, where several organic-carbon lean samples were enriched by migrated gaseous hydrocarbons. The core samples from Hole 530A were found to be severely contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures on board Glomar Challenger.
Resumo:
Low molecular weight hydrocarbon (LMWH) distributions were examined in sediments from Sites 1109 and 1115 in the western Woodlark Basin using purge-trap thermal adsorption/desorption gas analysis. A number of different hydrocarbon components >C1, which were not detected during shipboard gas analysis, were detected at both sites using the purge-trap procedure. Concentrations of ethane, propane, and butane remained relatively low (<100 pmol/g) throughout Site 1109 and had no consistent trend with depth. In contrast, the longer-chain components increased in concentration with depth. Hexane concentrations rose to 716 pmol/g at the base of the site with a concomitant increase in both 2-methyl- and 3-methylpentane. At Site 1115, concentrations of ethane, propane, butane, and isobutylene + 1-butene remained low (<60 pmol/g) throughout the site and again had no consistent trend with depth. 2-Methylpentane, 3-methylpentane, and hexane concentrations had a subsurface maximum that coincided with sediments containing abundant plant-rich material. The LMWH downhole profiles plus low in situ temperatures suggest that the LMWH components were formed in situ by low-temperature biological processes. Purge-trap analysis has indicated the presence of some unexpected deep low-temperature bacterial reactions, which demonstrates that further analysis of LMWH may provide valuable information at future Ocean Drilling Program sites.
Resumo:
Core samples taken during Leg 121 drilling aboard the JOIDES Resolution in the central Indian Ocean were analyzed for their low-molecular-weight hydrocarbon contents. Forty-three samples from the Broken Ridge and 39 samples from the Ninetyeast Ridge drill sites, deep-frozen on board immediately after recovery, were studied by a dynamic headspace technique (hydrogen-stripping/thermovaporization). Light hydrocarbons (saturated and olefinic) with two to four carbon atoms, and toluene as a selected aromatic compound, were identified. Total C2-C4 saturated hydrocarbon yields vary considerably from virtually zero in a Paleogene calcareous ooze from Hole 757B to nearly 600 nanogram/gram of dry-weight sediment (parts per billion) in a Cretaceous claystone from Hole 758A. An increase of light-hydrocarbon yields with depth, and hence with sediment temperature, was observed from Hole 758A samples down to a depth of about 500 meters below seafloor. Despite extreme data scatter due to lithological changes over this depth interval, this increased yield indicates the onset of temperature-controlled hydrocarbon formation reactions. Toluene contents are also extremely variable (generally between 10 and 100 ppb) and reach more than 300 ppb in two samples of tuffaceous lithology (Sections 121-755A-17R-4 and 121-758A-48R-4). As for the saturated hydrocarbons, there was also an increase of toluene yields with increasing depth in Hole 758A.