989 resultados para 2 Clay Soils
Resumo:
Weeds interfere dramatically in the productive potential of cassava; however, information regarding herbicides that are selective to crops is still scarce. Thus, the aim in this study was to assess the initial growth of IAC 90 cassava plants after the application of sulfentrazone at different stages of germination of cassava in clayey and sandy soils. Three experiments were simultaneously deployed: the first experiment consisted in the application of sulfentrazone in the non-germinated stage of cassava cuttings; the second one in the stage of germinated cassavas cuttings (0.9 cm shoots); and the third one in applications in the stage of cassava cuttings with buds emerging (6.5 cm shoots and emerging from the soil). For each experiment the experimental design in randomized blocks was used in the 2 x 5 factorial arrangement with four replications. The factors were composed of two soils (sandy and clayey) and five doses of sulfentrazone (0, 250, 500, 750 and 1,000 g ha-1). It was found that depending on the herbicide dose, development stage of the buds of cassava cuttings and the type of soil, damage can occur in the initial development of the IAC 90 cassava plants. The greatest potential of sulfentrazone selectivity has occurred in applications in the non-germinated cassava cuttings stage and in doses lower than 500 g ha-1 in the clayey soil.
Resumo:
The stillage, which is a liquid residue from the distillation of the sugarcane ethanolic fermentation, contains organic matter and can be a big source of pollution when it is discarded in the wrong way. Its application as fertilizer has been extended, which is reason to cause concerns regarding the environment. The aim of this work was to evaluate and quantify the biodegradation of stillage in sandy and clay soils, besides verifying the efficiency of the Embiotic Line®inoculum as an accelerator of the biodegradation. Bartha and Pramer respirometric technique was used to determine the production of CO2 during the 50 days of the biodegradation process, and the quantification of the initial and final microorganisms was also conducted. Results were analyzed using the Friedman statistical test. Clay soils were significantly better on stillage decomposition when compared to sandy soils (p=0.0153). Clay soils presented greater efficiency in stillage biodegradation, with higher field capacity, better water, organic matter and microbial retention. Regarding the use of the embiotic line, the experiment has shown this product does not interfere positively in the stillage biodegradation for both soils, possibly needing adjustments in its composition.
(Table 2) Clay mineral abundances of sediment cores from the Gulf of Cadiz and the Portuguese margin