994 resultados para 1st Kind Integral Equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers general second kind integral equations of the form(in operator form φ − kφ = ψ), where the functions k and ψ are assumed known, with ψ ∈ Y, the space of bounded continuous functions on R, and k such that the mapping s → k(s, · ), from R to L1(R), is bounded and continuous. The function φ ∈ Y is the solution to be determined. Conditions on a set W ⊂ BC(R, L1(R)) are obtained such that a generalised Fredholm alternative holds: If W satisfies these conditions and I − k is injective for all k ∈ W then I − k is also surjective for all k ∈ W and, moreover, the inverse operators (I − k) − 1 on Y are uniformly bounded for k ∈ W. The approximation of the kernel in the integral equation by a sequence (kn) converging in a weak sense to k is also considered and results on stability and convergence are obtained. These general theorems are used to establish results for two special classes of kernels: k(s, t) = κ(s − t)z(t) and k(s, t) = κ(s − t)λ(s − t, t), where κ ∈ L1(R), z ∈ L∞(R), and λ ∈ BC((R\{0}) × R). Kernels of both classes arise in problems of time harmonic wave scattering by unbounded surfaces. The general integral equation results are here applied to prove the existence of a solution for a boundary integral equation formulation of scattering by an infinite rough surface and to consider the stability and convergence of approximation of the rough surface problem by a sequence of diffraction grating problems of increasingly large period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider integral equations of the form ψ(x) = φ(x) + ∫Ωk(x, y)z(y)ψ(y) dy(in operator form ψ = φ + Kzψ), where Ω is some subset ofRn(n ≥ 1). The functionsk,z, and φ are assumed known, withz ∈ L∞(Ω) and φ ∈ Y, the space of bounded continuous functions on Ω. The function ψ ∈ Yis to be determined. The class of domains Ω and kernelskconsidered includes the case Ω = Rnandk(x, y) = κ(x − y) with κ ∈ L1(Rn), in which case, ifzis the characteristic function of some setG, the integral equation is one of Wiener–Hopf type. The main theorems, proved using arguments derived from collectively compact operator theory, are conditions on a setW ⊂ L∞(Ω) which ensure that ifI − Kzis injective for allz ∈ WthenI − Kzis also surjective and, moreover, the inverse operators (I − Kz)−1onYare bounded uniformly inz. These general theorems are used to recover classical results on Wiener–Hopf integral operators of21and19, and generalisations of these results, and are applied to analyse the Lippmann–Schwinger integral equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider second kind integral equations of the form x(s) - (abbreviated x - K x = y ), in which Ω is some unbounded subset of Rn. Let Xp denote the weighted space of functions x continuous on Ω and satisfying x (s) = O(|s|-p ),s → ∞We show that if the kernel k(s,t) decays like |s — t|-q as |s — t| → ∞ for some sufficiently large q (and some other mild conditions on k are satisfied), then K ∈ B(XP) (the set of bounded linear operators on Xp), for 0 ≤ p ≤ q. If also (I - K)-1 ∈ B(X0) then (I - K)-1 ∈ B(XP) for 0 < p < q, and (I- K)-1∈ B(Xq) if further conditions on k hold. Thus, if k(s, t) = O(|s — t|-q). |s — t| → ∞, and y(s)=O(|s|-p), s → ∞, the asymptotic behaviour of the solution x may be estimated as x (s) = O(|s|-r), |s| → ∞, r := min(p, q). The case when k(s,t) = к(s — t), so that the equation is of Wiener-Hopf type, receives especial attention. Conditions, in terms of the symbol of I — K, for I — K to be invertible or Fredholm on Xp are established for certain cases (Ω a half-space or cone). A boundary integral equation, which models three-dimensional acoustic propaga-tion above flat ground, absorbing apart from an infinite rigid strip, illustrates the practical application and sharpness of the above results. This integral equation mod-els, in particular, road traffic noise propagation along an infinite road surface sur-rounded by absorbing ground. We prove that the sound propagating along the rigid road surface eventually decays with distance at the same rate as sound propagating above the absorbing ground.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper considers second kind integral equations of the form $\phi (x) = g(x) + \int_S {k(x,y)} \phi (y)ds(y)$ (abbreviated $\phi = g + K\phi $), in which S is an infinite cylindrical surface of arbitrary smooth cross section. The “truncated equation” (abbreviated $\phi _a = E_a g + K_a \phi _a $), obtained by replacing S by $S_a $, a closed bounded surface of class $C^2 $, the boundary of a section of the interior of S of length $2a$, is also discussed. Conditions on k are obtained (in particular, implying that K commutes with the operation of translation in the direction of the cylinder axis) which ensure that $I - K$ is invertible, that $I - K_a $ is invertible and $(I - K_a )^{ - 1} $ is uniformly bounded for all sufficiently large a, and that $\phi _a $ converges to $\phi $ in an appropriate sense as $a \to \infty $. Uniform stability and convergence results for a piecewise constant boundary element collocation method for the truncated equations are also obtained. A boundary integral equation, which models three-dimensional acoustic scattering from an infinite rigid cylinder, illustrates the application of the above results to prove existence of solution (of the integral equation and the corresponding boundary value problem) and convergence of a particular collocation method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a class of boundary integral equations that arise in the study of strongly elliptic BVPs in unbounded domains of the form $D = \{(x, z)\in \mathbb{R}^{n+1} : x\in \mathbb{R}^n, z > f(x)\}$ where $f : \mathbb{R}^n \to\mathbb{R}$ is a sufficiently smooth bounded and continuous function. A number of specific problems of this type, for example acoustic scattering problems, problems involving elastic waves, and problems in potential theory, have been reformulated as second kind integral equations $u+Ku = v$ in the space $BC$ of bounded, continuous functions. Having recourse to the so-called limit operator method, we address two questions for the operator $A = I + K$ under consideration, with an emphasis on the function space setting $BC$. Firstly, under which conditions is $A$ a Fredholm operator, and, secondly, when is the finite section method applicable to $A$?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log⁡〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N log⁡N operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a generalization of collectively compact operator theory in Banach spaces is developed. A feature of the new theory is that the operators involved are no longer required to be compact in the norm topology. Instead it is required that the image of a bounded set under the operator family is sequentially compact in a weaker topology. As an application, the theory developed is used to establish solvability results for a class of systems of second kind integral equations on unbounded domains, this class including in particular systems of Wiener-Hopf integral equations with L1 convolutions kernels

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a Nystr¨om/product integration method for a class of second kind integral equations on the real line which arise in problems of two-dimensional scalar and elastic wave scattering by unbounded surfaces. Stability and convergence of the method is established with convergence rates dependent on the smoothness of components of the kernel. The method is applied to the problem of acoustic scattering by a sound soft one-dimensional surface which is the graph of a function f, and superalgebraic convergence is established in the case when f is infinitely smooth. Numerical results are presented illustrating this behavior for the case when f is periodic (the diffraction grating case). The Nystr¨om method for this problem is stable and convergent uniformly with respect to the period of the grating, in contrast to standard integral equation methods for diffraction gratings which fail at a countable set of grating periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper considers second kind equations of the form (abbreviated x=y + K2x) in which and the factor z is bounded but otherwise arbitrary so that equations of Wiener-Hopf type are included as a special case. Conditions on a set are obtained such that a generalized Fredholm alternative is valid: if W satisfies these conditions and I − Kz, is injective for each z ε W then I − Kz is invertible for each z ε W and the operators (I − Kz)−1 are uniformly bounded. As a special case some classical results relating to Wiener-Hopf operators are reproduced. A finite section version of the above equation (with the range of integration reduced to [−a, a]) is considered, as are projection and iterated projection methods for its solution. The operators (where denotes the finite section version of Kz) are shown uniformly bounded (in z and a) for all a sufficiently large. Uniform stability and convergence results, for the projection and iterated projection methods, are obtained. The argument generalizes an idea in collectively compact operator theory. Some new results in this theory are obtained and applied to the analysis of projection methods for the above equation when z is compactly supported and k(s − t) replaced by the general kernel k(s,t). A boundary integral equation of the above type, which models outdoor sound propagation over inhomogeneous level terrain, illustrates the application of the theoretical results developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical method for the Dirichlet initial boundary value problem for the heat equation in the exterior and unbounded region of a smooth closed simply connected 3-dimensional domain is proposed and investigated. This method is based on a combination of a Laguerre transformation with respect to the time variable and an integral equation approach in the spatial variables. Using the Laguerre transformation in time reduces the parabolic problem to a sequence of stationary elliptic problems which are solved by a boundary layer approach giving a sequence of boundary integral equations of the first kind to solve. Under the assumption that the boundary surface of the solution domain has a one-to-one mapping onto the unit sphere, these integral equations are transformed and rewritten over this sphere. The numerical discretisation and solution are obtained by a discrete projection method involving spherical harmonic functions. Numerical results are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formulations of fuzzy integral equations in terms of the Aumann integral do not reflect the behavior of corresponding crisp models. Consequently, they are ill-adapted to describe physical phenomena, even when vagueness and uncertainty are present. A similar situation for fuzzy ODEs has been obviated by interpretation in terms of families of differential inclusions. The paper extends this formalism to fuzzy integral equations and shows that the resulting solution sets and attainability sets are fuzzy and far better descriptions of uncertain models involving integral equations. The investigation is restricted to Volterra type equations with mildly restrictive conditions, but the methods are capable of extensive generalization to other types and more general assumptions. The results are illustrated by integral equations relating to control models with fuzzy uncertainties.