976 resultados para 185-1149
Resumo:
Basal carbonate sediments recovered at Ocean Drilling Program (ODP) Site 1149 lie directly on magnetic Anomaly M12. They contain abundant and moderately well preserved calcareous nannofossils. Two nannofossil zones are recognized: the lower Calcicalathina oblongata Zone and the upper Lithraphidites bollii Zone, indicating a late Valanginian-late Hauterivian age. The close occurrence of two significant bioevents, the first occurrence (FO) of L. bollii and the FO of Rucinolithus terebrodentarius in Core 185-1149B-20R, together with dip data recorded during in situ geophysical logging, suggest the presence of an unconformity that corresponds to the lower Hauterivian sedimentary section. The continuous occurrence of L. bollii is reported for the first time in sediments from the Pacific Ocean. Other marker species regarded as cosmopolitan (e.g., C. oblongata) have a sporadic occurrence. Nannoconids, very useful zonal markers for Tethyan areas, are virtually absent. The presence of an unusually high abundance of Diazomatolithus lehmanii is also recorded and correlates with the Valanginian 13C positive excursion.
Resumo:
A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate rocks and biogenic opal. The analyses were performed using a continuous flow hydride generation system coupled to a MC-ICP-MS. Samples have been purified through anion- and cation-exchange resins to separate Ge from matrix elements and eliminate potential isobaric interferences. Variations of 74Ge/70Ge ratios are expressed as d74Ge values relative to our internal standard and the long-term external reproducibility of the data is better than 0.2? for sample size as low as 15 ng of Ge. Data are presented for igneous and sedimentary rocks, and the overall variation is 2.4? in d74Ge, representing 12 times the uncertainty of the measurements and demonstrating that the terrestrial isotopic composition of Ge is not unique. Co-variations of 74Ge/70Ge, 73Ge/70Ge and 72Ge/70Ge ratios follow a mass-dependent behaviour and imply natural isotopic fractionation of Ge by physicochemical processes. The range of d74Ge in igneous rocks is only 0.25? without systematic differences among continental crust, oceanic crust or mantle material. On this basis, a Bulk Silicate Earth reservoir with a d74Ge of 1.3+/-0.2? can be defined. In contrast, modern biogenic opal such as marine sponges and authigenic glauconite displayed higher d74Ge values between 2.0? and 3.0?. This suggests that biogenic opal may be significantly enriched in light isotopes with respect to seawater and places a lower bound on the d74Ge of the seawater to +3.0?.This suggests that seawater is isotopically heavy relative to Bulk Silicate Earth and that biogenic opal may be significantly fractionated with respect to seawater. Deep-sea sediments are within the range of the Bulk Silicate Earth while Mesozoic deep-sea cherts (opal and quartz) have d74Ge values ranging from 0.7? to 2.0?. The variable values of the cherts cannot be explained by binary mixing between a biogenic component and a detrital component and are suggestive of enrichment in the light isotope of diagenetic quartz. Further work is now required to determine Ge isotope fractionation by siliceous organisms and to investigate the effect of diagenetic processes during chert lithification.
Resumo:
During Ocean Drilling Program Leg 185, we studied progressive changes of microfabrics of unconsolidated pelagic and hemipelagic sediments in Holes 1149A and 1149B in the northwest Pacific at 5818 m water depth. We paid particular attention to the early consolidation and diagenetic processes without tectonic deformation before the Pacific plate subduction at the Izu-Bonin Trench. Shape, size, and arrangement of pores were analyzed by scanning electron microscope (SEM) and were compared to anisotropy of magnetic susceptibility (AMS) data. The microfabric in Unit I is nondirectional fabric and is characterized by large peds of ~10-100 µm diameter, which are made up of clay platelets (mainly illite) and siliceous biogenic fragments. They are ovoid in shape and are mechanically packed by benthic animals. Porosity decreases from 0 to 60 meters below seafloor (mbsf) in Unit I (from 60% to 50%) in association with macropore size decreases. The microfabric of coarser grain particles other than clay in Unit II is characterized by horizontal preferred orientation because of depositional processes in Subunit IIA and burial compaction in Subunit IIB. On the other hand, small peds, which are probably made of fragments of fecal pellets and are composed of smectite and illite (3-30 µm diameter), are characterized by random orientation of clay platelets. The clay platelets in the small peds in Subunit IIA are in low-angle edge-to-face (EF) or face-to-face (FF) contact. These peds are electrostatically connected by long-chained clay platelets, which are interconnected by high-angle EF contact. Breaking of these long chains by overburden pressure diminishes the macropores, and the clay platelets in the peds become FF in contact, resulting in decreases in the volume of the micropores between clay platelets. Thus, porosity in Subunits IIA and IIB decreases remarkably downward. The AMS indicates random fabric and horizontal preferred orientation fabric in Units I and II, respectively. This result corresponds to that of SEM microfabric observations.In Subunit IIB, pressure solutions around radiolarian tests and clinoptilolite veins with normal displacement sense are seen distinctively below ~170 mbsf, probably in correspondence to the transition zone from opal-A to opal-CT.
Resumo:
Despite the different scientific objectives of Legs 185 and 191, the sedimentary sections recovered from Sites 1149 and 1179 are the two most complete sections recovered from the northwestern Pacific Basin by either the Deep Sea Drilling Project (DSDP) (i.e., Legs 6, 20, 32, and 86) or ODP (i.e., Legs 185 and 191). During Leg 185, a complete sedimentary section (410 m) and an additional 133 m of highly altered volcanic basement were recovered. The Miocene to Pleistocene section (i.e., upper ~150 m) recovered from Site 1149 includes lithostratigraphic Unit I (0-118.2 meters below sea floor [mbsf]) and Subunit IIA (118.2-149.5 mbsf) of Plank, Ludden, Escutia, et al. (2000, doi:10.2973/odp.proc.ir.185.2000) and consists of ash- and biogenic silica- bearing clay, radiolarian-bearing clay, silt-bearing clay, ash-bearing siliceous ooze, and diatomaceous clay, with numerous discrete volcanic ash layers (Plank, Ludden, Escutia, et al., 2000, doi:10.2973/odp.proc.ir.185.2000). During Leg 191, a near-continuous 375-m-thick sedimentary section was recovered in addition to 100 m of basaltic basement. The upper 221.5 m of the sedimentary section at Site 1179 (i.e., within lithostratigraphic Unit I of Kanazawa, Sager, Escutia et al. [2001, doi:10.2973/odp.proc.ir.191.2001]) consists of upper Miocene to Pleistocene clay- and radiolarian-bearing diatom ooze containing numerous discrete ash layers. The presence of discrete ash layers within the Miocene to Pleistocene sedimentary section at both Site 1149 and 1179 provides a unique opportunity to conduct 40Ar/39Ar ash chronology to refine the excellent magnetostratigraphic records (based on the scale of Berggren et al., 1995) obtained shipboard from both sites (Plank, Ludden, Escutia, et al., 2000, doi:10.2973/odp.proc.ir.185.2000; Kanazawa, Sager, Escutia, et al., 2001, doi:10.2973/odp.proc.ir.191.2001).In this data report we present the analytical results from the 40Ar/39Ar incrementally heated analyses and provide a new combined late Miocene to Pleistocene 40Ar/39Ar and magnetostratigraphic chronology for the northwestern Pacific.
Resumo:
Multiple-collector inductively coupled plasma mass spectrometry has been used for the precise measurement of the isotopic composition of Se in geological samples. Se is chemically purified before analysis by using cotton impregnated with thioglycollic acid. This preconcentration step is required for the removal of matrix-interfering elements for hydride generation, such as transitional metals, and also for the quantitative separation of other hydride-forming elements, such as Ge, Sb, and As. The analyte is introduced in the plasma torch with a continuous-flow hydride generation system. Instrumental mass fractionation is corrected with a "standard-sample bracketing" approach. By use of this new technique, the minimum Se required per analysis is lowered to 10 ng, which is one order of magnitude less than the amount needed for the N-TIMS technique. The estimated external precision calculated for the 82Se/76Se isotope ratio is 0.25? (2 sigma), and the data are reported as delta notation (?) relative to our internal standard (MERCK elemental standard solution). Measurements of Se isotopes are presented for samples of standard solutions and geological reference materials, such as silicate rocks, soils, and sediments. The Se isotopic composition of selected terrestrial and extraterrestrial materials are also presented. An overall Se isotope variation of 8? has been observed, suggesting that Se isotopes fractionate readily and are extremely useful tracers of natural processes.
Resumo:
The subduction of oceanic plates regulates crustal growth, influences arc volcanism, and refertilizes the mantle. Continental growth occurs by subduction of crustal material (seawater components, marine sediments, and basaltic crust). The geochemical and physical evolution of the Earth's crust depends, in large part, on the fate of subducted material at convergent margins (Armstrong, 1968, doi:10.1029/RG006i002p00175; Karig and Kay, 1981, 10.1098/rsta.1981.0108). The crustal material on the downgoing plate is recycled to various levels in the subduction zone. The recycling process that takes place in the "Subduction Factory" is difficult to observe directly but is clearly illuminated using chemical tracers. Von Huene and Scholl (1991, doi:10.1029/91RG00969) and Plank and Langmuir (1993, doi:10.1038/362739a0) preliminarily calculated a large flux of subducted materials. By mass balancing the chemical tracers and measuring the fractionations that occur between them, the Subduction Factory work and the effect on the Earth's evolution can be estimated. In order to elucidate this mass balance, Ocean Drilling Program Leg 185 drilled two deepwater shales into the oceanic crust situated in the Mariana-Izu Trenches and recovered core samples of incoming oceanic crust. The calculations of mass circulation in the subduction zone, however, did not take into account the mass transfer properties within subducted oceanic crust, although the dewatering fluid and diffused ions may play an important role in various activities such as seismogeneity, serpentine diapiring, and arc volcanism. Thus, this paper focuses on the quantitative measurements of the physical and mass transfer properties of subducted oceanic crust.
Resumo:
The results of shore-based three-axis resistivity and X-ray computed tomography (CT) measurements on cube-shaped samples recovered during Leg 185 are presented along with moisture and density, P-wave velocity, resistivity, and X-ray CT measurements on whole-round samples of representative lithologies from Site 1149. These measurements augment the standard suite of physical properties obtained during Leg 185 from the cube samples and samples obtained adjacent to the cut cubes. Both shipboard and shore-based measurements of physical properties provide information that assists in characterizing lithologic units, correlating cored material with downhole logging data, understanding the nature of consolidation, and interpreting seismic reflection profiles.