989 resultados para 171-1050


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen isotope analyses of well-preserved foraminifera from Blake Nose (30°N paleolatitude, North Atlantic) and globally distributed deep-sea sites provide a long-term paleotemperature record for the late Albian-Maastrichtian interval that is difficult to reconcile with the existence of significant Cretaceous ice sheets. Given reasonable assumptions about the isotopic composition of Cretaceous seawater, our results suggest that middle bathyal water temperatures at Blake Nose increased from ~12°C in the late Albian through middle Cenomanian to a maximum of 20°C during the latest Cenomanian and earliest Turonian. Bottom waters were again ~12°C during the middle Campanian and cooled to a minimum of 9°C during the Maastrichtian. Correlative middle bathyal foraminifera from other ocean basins yield paleotemperature estimates that are very similar to those from Blake Nose. Comparison of global bottom-water temperatures and latitudinal thermal gradients suggests that global climate changed from a warm greenhouse state during the late Albian through late Cenomanian to a hot greenhouse phase during the latest Cenomanian through early Campanian, then to cool greenhouse conditions during the mid-Campanian through Maastrichtian.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiolarian cherts in the Tethyan realm of Jurassic age were recently interpreted as resulting from high biosiliceous productivity along upwelling zones in subequatorial paleolatitudes the locations of which were confirmed by revised paleomagnetic estimates. However, the widespread occurrence of cherts in the Eocene suggests that cherts may not always be reliable proxies of latitude and upwelling zones. In a new survey of the global spatio-temporal distribution of Cenozoic cherts in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) sediment cores, we found that cherts occur most frequently in the Paleocene and early Eocene, with a peak in occurrences at ~50 Ma that is coincident with the time of highest bottom water temperatures of the early Eocene climatic optimum (EECO) when the global ocean was presumably characterized by reduced upwelling efficiency and biosiliceous productivity. Cherts occur less commonly during the subsequent Eocene global cooling trend. Primary paleoclimatic factors rather than secondary diagenetic processes seem therefore to control chert formation. This timing of peak Eocene chert occurrence, which is supported by detailed stratigraphic correlations, contradicts currently accepted models that involve an initial loading of large amounts of dissolved silica from enhanced weathering and/or volcanism in a supposedly sluggish ocean of the EECO, followed during the subsequent middle Eocene global cooling by more vigorous oceanic circulation and consequent upwelling that made this silica reservoir available for enhanced biosilicification, with the formation of chert as a result of biosilica transformation during diagenesis. Instead, we suggest that basin-basin fractionation by deep-sea circulation could have raised the concentration of EECO dissolved silica especially in the North Atlantic, where an alternative mode of silica burial involving widespread direct precipitation and/or absorption of silica by clay minerals could have been operative in order to maintain balance between silica input and output during the upwelling-deficient conditions of the EECO. Cherts may therefore not always be proxies of biosiliceous productivity associated with latitudinally focused upwelling zones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

More than 50 discrete volcanic ash layers were recovered at the five drill sites of the Blake Nose depth transect (Leg 171B, western central Atlantic). The majority of these ash layers are intercalated with Eocene hemipelagic sediments with a pronounced frequency maximum in the upper Eocene. Several ash layers appear to be deposited from volcanic fallout with little or no indication of secondary remobilization. They provide excellent stratigraphic markers for a correlation of the Leg 171B drill sites. Other ash layers were probably redeposited from volcaniclastic-rich turbidity currents, but they still represent geologically instantaneous events that can be used in stratigraphic correlation between adjacent drill holes. Additional nonvolcanic marker beds, like the suspect late Eocene impact event layer, were included in our hole-to-hole correlations. Stratigraphic and downcore positions of marker beds were compiled and plotted against existing composite depth records that were constructed to guide high-resolution sampling. Comparison of our correlation with the spliced composite sections of each drill site reveals several minor and some major discrepancies. These may result from drilling distortion or missing sections, from the lack of unambiguous criteria for the synchronism of ash layers, or from the systematic exclusion of marker-bed data in the construction of the spliced record. Integration of both correlation approaches will help eliminate most of the observed discrepancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A late Albian-early Cenomanian record (~103.3 to 99.0 Ma), including organic-rich deposits and a d13C increase associated with oceanic anoxic event 1d (OAE 1d), is described from Ocean Drilling Program sites 1050 and 1052 in the subtropical Atlantic. Foraminifera are well preserved at these sites. Paleotemperatures estimated from benthic d18O values average ~14°C for middle bathyal Site 1050 and ~17°C for upper bathyal Site 1052, whereas surface temperatures are estimated to have ranged from 26°C to 31°C at both sites. Among planktonic foraminifera, there is a steady balance of speciation and extinction with no discrete time of major faunal turnover. OAE 1d is recognized on the basis of a 1.2 per mill d13C increase (~100.0-99.6 Ma), which is similar in age and magnitude to d13C excursions documented in the North Atlantic and western Tethys. Organic-rich "black shales" are present throughout the studied interval at both sites. However, deposition of individual black shale beds was not synchronous between sites, and most of the black shale was deposited before the OAE 1d d13C increase. A similar pattern is observed at the other sites where OAE 1d has been recognized indicating that the site(s) of excess organic carbon burial that could have caused the d13C increase has (have) yet to be found. Our findings add weight to the view that OAEs should be chemostratigraphically (d13C) rather than lithostratigraphically defined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluate phosphorus (P) and biogenic barium (bio-Ba) as nutrient burial and export productivity indicators for the Late Cretaceous and early Paleogene, combining these with calcium carbonate (CaCO3), organic carbon (C), and bulk CaCO3 C isotopes (d13C). Sample ages span 36-71 Ma (~1 sample/0.5 m.y.) for a depth transect of sites in the western North Atlantic (Blake Nose, Ocean Drilling Program Leg 171B, Sites 1052, 1051, and 1050). We use a multitracer approach including redox conditions to investigate export productivity surrounding the global Paleocene d13C maximum (~57 Ma). Reducing conditions render most of the bio-Ba record not useful for export productivity interpretations. P and organic C records indicate that regional nutrient and organic C burial were high at ~61 and ~69 Ma, and low during the Paleocene d13C maximum, a time of proposed global high relative organic C burial. Observed organic C burial changes at Blake Nose cannot explain this C isotope excursion.