994 resultados para 164-995


Relevância:

100.00% 100.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic carbonates were recovered from several horizons between 0 and 52 mbsf in sediments that overlay the Blake Ridge Diapir on the Carolina Rise (Ocean Drilling Program [ODP] Site 996). Active chemosynthetic communities at this site are apparently fed by fluid conduits extending beneath a bottom-simulating reflector (BSR). Gas hydrates occur at several depth intervals in these near-surface sediments. The carbonate nodules are composed of rounded to subangular intraclasts and carbonate cemented mussel shell fragments. Electron microprobe and X-ray diffraction (XRD) investigations show that aragonite is the dominant authigenic carbonate. Authigenic aragonite occurs both as microcrystalline, interstitial cement, and as cavity-filling radial fibrous crystals. The d13C values of the authigenic aragonite vary between -48.4 per mil and -30.5 per mil (Peedee belemnite [PDB]), indicating that carbon derived from 13C-depleted methane is incorporated into these carbonates. The d13C of pore water sum CO2 values are most negative in the upper 10 mbsf, near the sediment/water interface (-38 per mil ± 5 per mil), but noticeably more positive below 25 mbsf (+5 per mil ± 6 per mil). Because carbonates derive their carbon from HCO3-, dissimilarities between the d13C values of carbonate precipitates recovered from greater than 10 mbsf and d13C values of the associated pore fluids suggests that these carbonates formed near the seafloor. Differences of about 1 per mil in the oxygen isotopic composition of carbonate precipitates from different depths are possibly related to changes in bottom-water conditions during glacial and interglacial time periods. Measurements of the strontium isotopic composition on 13 carbonate samples show 87Sr/86Sr values between 0.709125 and 0.709206 with a mean of 0.709165, consistent with the approximate age of their host sediment. Furthermore, the 87Sr/86Sr values of six pore-water samples from Site 996 vary between 0.709130 and 0.709204. The similarity of these values to seawater (87Sr/86Sr = 0.709175), and to 87Sr/86Sr values of pore water from similar sample depths elsewhere on the Blake Ridge (Sites 994, 995, and 997), indicates a shallow Sr source. The 87Sr/86Sr values of the authigenic carbonates at Site 996 are not consistent with the Sr isotopic values predicted for carbonates precipitated from fluids transported upward along fault conduits extending through the base of the gas hydrate-stability zone. Based on our data, we see no evidence of continuing carbonate diagenesis with depth. Therefore, with the exception of their seafloor expression as carbonate crusts, fossil vent sites will not be preserved. Because these authigenic features apparently form only at the seafloor, their vertical distribution and sediment age imply that seepage has been going on in this area for at least 600,000 yr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic carbonate mineral distributions are compared to pore-water geochemical profiles and used to evaluate diagenesis within sedimentary sections containing gas hydrates on the Blake Ridge (Ocean Drilling Program Sites 994, 995, and 997). Carbonate mineral distributions reveal three distinct diagenetic zones. (1) Carbonate minerals in the upper 20 m are primarily biogenic and show no evidence of diagenesis. The d13C and d18O values of calcite within this zone reflects marine carbonate (~0 per mil Peedee belemnite [PDB]) formed in equilibrium with seawater. (2) Between 20 and 100 mbsf, calcite d13C values are distinctly negative (as low as -7.0 per mil), and authigenic dolomite is common (~2-40 wt%) with d13C values between -3.6 per mil and 13.7 per mil. (3) Below 100 mbsf, dolomite abundance decreases to trace amounts, and disseminated siderite becomes the pervasive (~2-30 wt%) authigenic carbonate. Both siderite textures and stable isotope values indicate direct precipitation from pore fluids rather than dolomite replacement. The d13C and d18O values of siderite vary from 5.0 per mil to 10.9 per mil and 2.9 per mil to 7.6 per mil, respectively. Comparisons between the d13C profiles of dissolved inorganic carbon (DIC) and pore-water concentration gradients, with the d13C and d18O values of authigenic carbonates, delineate a distinct depth zonation for authigenic carbonate mineral formation. Coincidence of the most negative d13CDIC values (<=-38 per mil) and negative d13C values of both calcite and dolomite, with pore-water alkalinity increases, sulfate depletion, and decreases in interstitial Ca2+ and Mg2+ concentrations at and below 20 mbsf, suggests that authigenic calcite and dolomite formation is initiated at the base of the sulfate reduction zone (~21 mbsf) and occurs down to ~100 mbsf. Siderite formation apparently occurs between 120 and 450 mbsf; within, and above, the gas hydrate-bearing section of the sediment column (~200-450 mbsf). Siderite d13C and d18O values are nearly uniform from their shallowest occurrence to the bottom of the sedimentary section. However, present-day pore-water d13CDIC values are only similar to siderite d13C values between ~100 and 450 mbsf. Furthermore, calculated equilibrium d18O values of siderite match the measured 18O values of siderite between 120 and 450 mbsf. This interval is characterized by high alkalinity (40-120 mM) and low Ca2+ and Mg2+ concentrations, conditions that are consistent with siderite formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty routinely used nannofossil datums in the late Neogene and Quaternary were identified at three Blake Ridge sites drilled during Leg 164. The quantitative investigation of the nannofossil assemblages in 236 samples selected from Hole 994C provide new biostratigraphic and paleoceanographic information. Although mostly overlooked previously, Umbilicosphaera aequiscutum is an abundant component of the late Neogene flora, and its last occurrence at ~2.3 Ma is a useful new biostratigraphic event. Small Gephyrocapsa evolved within the upper part of Subzone CN11a (~4.3 Ma), and after an initial acme, it temporarily disappeared for 400 k.y., between 2.9 and 2.5 Ma. Medium-sized Gephyrocapsa evolved in the latest Pliocene ~2.2 Ma), and after two short temporary disappearances, common specimens occurred continuously just above the Pliocene/Pleistocene boundary. The base of Subzone CN13b should be recognized as the beginning of the continuous occurrence of medium-sized (>4 µm) Gephyrocapsa. Stratigraphic variation in abundance of the very small placoliths and Florisphaera profunda alternated, indicating potential of the former as a proxy for the paleoproductivity. At this site, it is likely that upwelling took place during three time periods in the late Neogene (6.0-4.6 Ma, 2.3-2.1 Ma, and 2.0-1.8 Ma) and also in the early Pleistocene (1.4-0.9 Ma). Weak upwelling is also likely to have occurred intermittently through the late Pliocene. Due to the sharp and abrupt turnover of the nannofossils, which resulted from an evolution of very competitive species, the paleoproductivity of the late Pleistocene is not clear. The site was mostly in an oligotrophic central gyre setting during the 4.6- to 2.3-Ma interval, intermittently between 2.1 and 1.4 Ma, and continuously for the last several tens of thousand years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments from Holes 994C, 995A, 997A, and 997B have been investigated for "combined" gases (adsorbed gas and that portion of free gas that has not escaped from the pore volume during core recovery and sample collection and storage), solvent-extractable organic compounds, and microscopically identifiable organic matter. The soluble materials mainly consist of polar compounds. The saturated hydrocarbons are dominated by n-alkanes with a pronounced odd-even predominance pattern that is derived from higher plant remains. Unsaturated triterpenoids and 17ß, 21ß-pentacyclic triterpenoids are characteristic for a low maturity stage of the organic matter. The low maturity is confirmed by vitrinite reflectance values of 0.3%. The proportion of terrestrial remains (vitrinite) increases with sub-bottom depth. Within the liptinite fraction, marine algae plays a major role in the sections below 180 mbsf, whereas above this depth sporinites and pollen from conifers are dominant. These facies changes are confirmed by the downhole variations of isoprenoid and triterpenoid ratios in the soluble organic matter. The combined gases contain methane, ethane, and propane, which is a mixture of microbial methane and thermal hydrocarbon gases. The variations in the gas ratios C1/(C2+C3) reflect the depth range of the hydrate stability zone. The carbon isotopic contents of ethane and propane indicate an origin from marine organic matter that is in the maturity stage of the oil window.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anaerobic methane oxidation (AMO) was characterized in sediment cores from the Blake Ridge collected during Ocean Drilling Program (ODP) Leg 164. Three independent lines of evidence support the occurrence and scale of AMO at Sites 994 and 995. First, concentration depth profiles of methane from Hole 995B exhibit a region of upward concavity suggestive of methane consumption. Diagenetic modeling of the concentration profile indicates a 1.85-m-thick zone of AMO centered at 21.22 mbsf, with a peak rate of 12.4 nM/d. Second, subsurface maxima in tracer-based sulfate reduction rates from Holes 994B and 995B were observed at depths that coincide with the model-predicted AMO zone. The subsurface zone of sulfate reduction was 2 m thick and had a depth integrated rate that compared favorably to that of AMO (1.3 vs. 1.1 nmol/cm**2/d, respectively). These features suggest close coupling of AMO and sulfate reduction in the Blake Ridge sediments. Third, measured d13CH4 values are lightest at the point of peak model-predicted methane oxidation and become increasingly 13C-enriched with decreasing sediment depth, consistent with kinetic isotope fractionation during bacterially mediated methane oxidation. The isotopic data predict a somewhat (60 cm) shallower maximum depth of methane oxidation than do the model and sulfate reduction data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique set of geochemical pore-water data, characterizing the sulfate reduction and uppermost methanogenic zones, has been collected at the Blake Ridge (offshore southeastern North America) from Ocean Drilling Program (ODP) Leg 164 cores and piston cores. The d13C values of dissolved CO2 (sum CO2) are as 13C-depleted as -37.7 per mil PDB (Site 995) at the sulfate-methane interface, reflecting a substantial contribution of isotopically light carbon from methane. Although the geochemical system is complex and difficult to fully quantify, we use two methods to constrain and illustrate the intensity of anaerobic methane oxidation in Blake Ridge sediments. An estimate using a two-component mixing model suggests that ~24% of the carbon residing in the sum CO2 pool is derived from biogenic methane. Independent diagenetic modeling of a methane concentration profile (Site 995) indicates that peak methane oxidation rates approach 0.005 µmol/cm**3/yr, and that anaerobic methane oxidation is responsible for consuming ~35% of the total sulfate flux into the sediments. Thus, anaerobic methane oxidation is a significant biogeochemical sink for sulfate, and must affect interstitial sulfate concentrations and sulfate gradients. Such high proportions of sulfate depletion because of anaerobic methane oxidation are largely undocumented in continental rise sediments with overlying oxic bottom waters. We infer that the additional amount of sulfate depleted through anaerobic methane oxidation, fueled by methane flux from below, causes steeper sulfate gradients above methane-rich sediments. Similar pore water chemistries should occur at other methane-rich, continental-rise settings associated with gas hydrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Sites 994, 995, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m**3 of gas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was designed to check the assumption of the grain-size control on a gas hydrate presence in the Blake Ridge sediments; the assumption had originated from the data gained at Deep Sea Drilling Project (DSDP) Site 533. Granulometric analysis (the combined pipette-sieve method) of the 345 sediment samples obtained after pore-water squeezing from Ocean Drilling Program (ODP) Sites 994, 995, and 997 has provided support for this assumption. The zone of negative anomalies of pore-water chlorinity, which is generally recognized to be gas hydrate bearing, is confined, as a whole, to the interval of comparatively coarse-grained sediments in each of the three site columns because content of the fine fractions <0.05, <0.01, <0.005, and <0.001 mm is lower there (although the character of this control changes from site to site). The individual chlorinity anomalies also coincide, for the most part, with relatively coarse-grained sediments.