999 resultados para 156-947
Resumo:
The aim of this study was to determine whether the presence of leprosy reactional episodes could be associated with chronic oral infection. Thirty-eight leprosy patients were selected and divided into 2 groups: group I - 19 leprosy patients with oral infections, and group II - 19 leprosy patients without oral infections. Ten patients without leprosy, but presenting oral infections, were assigned to the control group. Leprosy patients were classified according to Ridley and Jopling classification and reactional episodes of the erythema nodosum type or reversal reaction were identified by clinical and histopathological features associated with serum IL-1, TNF-α, IL-6, IFN-γ and IL-10 levels. These analyses were performed immediately before and 7 days after the oral infection elimination. Patients from group I presenting oral infections reported clinical improvement of the symptoms of reactional episodes after dental treatment. Serum IL-1, TNF-α, IL-6, IFN-γ and IL-10 levels did not differ significantly before and after dental treatment as determined by the Wilcoxon test (p>0.05). Comparison of the 2 groups showed statistically significant differences in IL-1 and IL-6 at baseline and in IL-1, IL-6 and IL-10 on the occasion of both collections 7 days after therapy. Serum IL-6 and IL-10 levels in group I differed significantly at baseline compared to control (Mann-Whitney test; p<0.05). These results suggest that oral infection could be involved as a maintenance factor in the pathogenesis of leprosy reactional episodes.
Resumo:
The γ-aminobutyric acid (Gaba) is a non-protein amino acid found in prokaryotes and eukaryotes. Its role in plant development has not been fully established. This study reports a quantification of the levels of endogenous Gaba, as well as investigation of its role in different stages of somatic embryogenesis in Acca sellowiana Berg. (Myrtaceae). Zygotic embryos were used as explants and they were inoculated into the culture medium contained different concentrations of Gaba (0,2, 4, 6, 8 and 10 µM). The highest concentrations of endogenous Gaba were detected between the third and nine days after inoculation, reaching the value of 12.77 µmol.g-1FW. High frequency of somatic embryogenesis was observed in response to 10 µM Gaba. This treatment also resulted in a large number of normal embryos, and the lowest percentage of formation of fused somatic embryos, phenotypic characteristic of most deformed embryos in all treatments. Also, all treatments promoted the formation of the somatic embryos with positive characteristics of development resumption, which however did not originate the seedlings.
Resumo:
High molecular weight components from Ascaris suum extract suppress ovalbumin-specific immunity in mice. In IFN-γ-deficient mice, ovalbumin-specific delayed-type hypersensitivity reactions are more strongly downregulated by these suppressive components. Here, the cellularity of the delayed-type hypersensitivity reaction in IFN-γ-deficient mice and the increased downregulation induced by Ascaris suum components were analyzed. IL-12p40-dependent neutrophilic influx was predominant. Suboptimal doses of the suppressive fraction from this nematode completely inhibited the hypersensitivity reaction, thus indicating intensification of the immunosuppression under conditions of intense recruitment of IFN-γ-independent neutrophils.
Resumo:
O estudo teve como objetivo avaliar os casos de urolitíase canina em que a composição mineral dos urólitos foi analisada quantitativamente. Foi avaliada quantitativamente a composição mineral de 156 urólitos obtidos de cães (nefrólitos, ureterólitos, urocistólitos e uretrólitos). Desse total, 79,5% (n=124) eram simples, 18% (n=28) eram compostos e apenas 2,5% (n=4) eram mistos. A estruvita foi o tipo mineral mais frequente nos urólitos simples (47,6%; n=59), em todos os mistos (100%; n=4) e nas camadas núcleo e pedra de urólitos compostos (32,1 e 75%, respectivamente). O oxalato de cálcio foi o segundo mineral mais frequente dos urólitos simples (37,9%, n=47). Ao contrário do que é preconizado para os urólitos simples, as recomendações para o tratamento de urólitos compostos são mais complexas, tais como protocolos de tratamento de dissolução diferentes (se composto por minerais distintos e passíveis de dissolução como urato e estruvita). Além disso, a dissolução pode não ser viável, caso ocorra presença de material insolúvel envolvendo o urólito ou se este representar mais de 20% da camada. Vinte e dois urólitos compostos (78,7%) apresentaram uma camada externa não passível de dissolução (oxalato de cálcio ou fosfato de cálcio); dois (7,1%) apresentaram camadas externas passíveis de dissolução (estruvita ou urato), porém camadas mais internas não solúveis, o que permitiria apenas a dissolução parcial do urólito. Assim, o conhecimento da composição de todas as camadas que compõem o urólito é essencial para o entendimento da formação do cálculo e consequentemente para a indicação do tratamento adequado, assim como para prevenção de recidivas.
Resumo:
High molecular weight components from Ascaris suum extract suppress ovalbumin-specific immunity in mice. In IFN-γ-deficient mice, ovalbumin-specific delayed-type hypersensitivity reactions are more strongly downregulated by these suppressive components. Here, the cellularity of the delayed-type hypersensitivity reaction in IFN-γ-deficient mice and the increased downregulation induced by Ascaris suum components were analyzed. IL-12p40-dependent neutrophilic influx was predominant. Suboptimal doses of the suppressive fraction from this nematode completely inhibited the hypersensitivity reaction, thus indicating intensification of the immunosuppression under conditions of intense recruitment of IFN-γ-independent neutrophils.
Resumo:
A doença de Chagas é uma importante doença parasitária crônica, que acomete cerca de 9-11 milhões de pessoas na América Latina. Provavelmente, uma combinação de fatores relacionados ao parasito e ao hospedeiro podem ser os responsáveis pela patogênese na fase crônica da doença. Dentre os fatores relacionados ao hospedeiro, a resposta imunológica é um parâmetro de especial interesse. Objetivamos avaliar os níveis plasmáticos das citocinas interferon gama, interleucina 10, fator de necrose tumoral alfa e das imunoglobulinas G total, 3 e 4, por ELISA e do óxido nítrico, pela reação de Griess, entre indivíduos soronegativos e soropositivos para Trypanosoma cruzi, com as formas clínicas cardíaca, indeterminada e digestiva. Os indivíduos soropositivos para Trypanosoma cruzi produziram níveis significativamente mais elevados de imunoglobulinas G total e G3. Indivíduos com a forma digestiva apresentam níveis mais elevados de imunoglobulina G4 e interleucina 10. Entretanto, tais indivíduos apresentaram menores níveis de óxido nítrico do que controles. Os resultados sugerem que os maiores níveis de IL-10 observados nos indivíduos com a forma digestiva poderiam contribuir com os maiores níveis de IgG4 específicos observados.
Resumo:
INTRODUCTION: A single nucleotide polymorphism (SNP) in the gene encoding gamma interferon influences its production and is associated with severity of infectious diseases. This study aimed to evaluate the association of IFNγ+874T/A SNP with duration of disease, morbidity, and development of retinochoroiditis in acute toxoplasmosis. METHODS: A case-control study was conducted among 30 patients and 90 controls. RESULTS: Although statistical associations were not confirmed, A-allele was more common among retinochoroiditis cases and prolonged illness, while T-allele was more frequent in severe disease. CONCLUSIONS: Despite few cases, the results could indicate a relation between IFNγ+874T/A single nucleotide polymorphism and clinical manifestations of toxoplasmosis.
Resumo:
Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS) and that are modulated by inflammatory cytokines such as interferon γ (IFNγ). Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg) of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for many other innate immunity-related brain disorders.
Resumo:
Background: The transcription factor IRF4 is involved in several T-cell-dependent chronic inflammatory diseases. To elucidate the mechanisms for pathological cytokine production in colitis, we addressed the role of the IRF transcription factors in human inflammatory bowel disease (IBD) and experimental colitis.Methods: IRF levels and cytokine production in IBD patients were studied as well as the effects of IRF4 deficiency in experimental colitis.Results: In contrast to IRF1, IRF5, and IRF8, IRF4 expression in IBD was augmented in the presence of active inflammation. Furthermore, IRF4 levels significantly correlated with IL-6 and IL-17 mRNA expression and to a lesser extent with IL-22 mRNA expression in IBD. To further explore the role of IRF4 under in vivo conditions, we studied IRF4-deficient and wildtype mice in experimental colitis. In contrast to DSS colitis, IRF4 deficiency was protective in T-cell-dependent transfer colitis associated with reduced ROR alpha/gamma t levels and impaired IL-6, IL-17a, and IL-22 production, suggesting that IRF4 acts as a master regulator of mucosal Th17 cell differentiation. Subsequent mechanistic studies using database analysis, chromatin immunoprecipitation, and electrophoretic mobility shift assays identified a novel IRF4 binding site in the IL-17 gene promoter. Overexpression of IRF4 using retroviral infection induced IL-17 production and IL-17 together with IL-6 induced ROR gamma t expression.Conclusions: IRF4 can directly bind to the IL-17 promotor and induces mucosal ROR gamma t levels and IL-17 gene expression thereby controlling Th17-dependent colitis. Targeting of this molecular mechanism may lead to novel therapeutic approaches in human IBD.
Resumo:
The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4(+) T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4(+) T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4(+) T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2(ΔCD4Cre)) were infected with the protozoan parasite Leishmania major. N1N2(ΔCD4Cre) mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4(+) T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4(+) T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.
Resumo:
The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4(+) T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4(+) T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4(+) T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2(ΔCD4Cre)) were infected with the protozoan parasite Leishmania major. N1N2(ΔCD4Cre) mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4(+) T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4(+) T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.
Resumo:
Rhesus macaques infected with the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) serve as a model for human infection with Lassa fever virus. To identify the earliest events of acute infection, rhesus macaques were monitored immediately after lethal infection for changes in peripheral blood mononuclear cells (PBMCs). Changes in CD3, CD4, CD8 and CD20 subsets did not vary outside the normal fluctuations of these blood cell populations; however, natural killer (NK) and γδ T cells increased slightly on day 1 and then decreased significantly after two days. The NK subsets responsible for the decrease were primarily CD3-CD8+ or CD3-CD16+ and not the NKT (primarily CD3+CD56+) subset. Macaques infected with a non-virulent arenavirus, LCMV-Armstrong, showed a similar drop in circulating NK and γδ T cells, indicating that this is not a pathogenic event. V³9 T cells, representing the majority of circulating γδ T cells in rhesus macaques, displayed significant apoptosis when incubated with LCMV in cell culture; however, the low amount of cell death for virus-co-cultured NK cells was insufficient to account for the observed disappearance of this subset. Our observations in primates are similar to those seen in LCMV-infected mice, where decreased circulating NK cells were attributed to margination and cell death. Thus, the disappearance of these cells during acute hemorrhagic fever in rhesus macaques may be a cytokine-induced lymphopenia common to many virus infections.
Resumo:
Channels formed by the gap junction protein Connexin36 (CX36) contribute to the proper control of insulin secretion. We previously demonstrated that chronic exposure to glucose decreases Cx36 levels in insulin-secreting cells in vitro. Here, we investigated whether hyperglycemia also regulates Cx36 in vivo. Using a model of continuous glucose infusion in adult rats, we showed that prolonged (24-48 h) hyperglycemia reduced the Cx36 gene Gjd2 mRNA levels in pancreatic islets. Accordingly, prolonged exposure to high glucose concentrations also reduced the expression and function of Cx36 in the rat insulin-producing INS-1E cell line. The glucose effect was blocked after inhibition of the cAMP/PKA pathway and was associated with an overexpression of the inducible cAMP early repressor ICER-1/ICER-1γ, which binds to a functional cAMP-response element in the promoter of the Cx36 gene Gjd2. The involvement of this repressor was further demonstrated using an antisense strategy of ICER-1 inhibition, which prevented glucose-induced downregulation of Cx36. The data indicate that chronic exposure to glucose alters the in vivo expression of Cx36 by the insulin-producing β-cells through ICER-1/ICER-1γ overexpression. This mechanism may contribute to the reduced glucose sensitivity and altered insulin secretion, which contribute to the pathophysiology of diabetes.