997 resultados para 134-832B


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 134 was located in the central part of the New Hebrides Island Arc, in the Southwest Pacific. Here the d'Entrecasteaux Zone of ridges, the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain, is colliding with the arc. The region has a Neogene history of subduction polarity reversal, ridge-arc collision, and back-arc spreading. The reasons for drilling in this region included the following: (1) to determine the differences in the style and time scale of deformation associated with the two ridge-like features (a fairly continuous ridge and an irregularly topographic seamount chain) that are colliding with the central New Hebrides Island Arc; (2) to document the evolution of the magmatic arc in relation to the collision process and possible Neogene reversal of subduction; and (3) to understand the process of dewatering of a small accretionary wedge associated with ridge collision and subduction. Seven sites were occupied during the leg, five (Sites 827-831) were located in the d'Entrecasteaux Zone where collision is active. Three sites (Sites 827, 828, and 829) were located where the North d'Entrecasteaux Ridge is colliding, whereas two sites (Sites 830 and 831) were located in the South d'Entrecasteaux Chain collision zone. Sites 828 (on North d'Entrecasteaux Ridge) and 831 (on Bougainville Guyot) were located on the Pacific Plate, whereas all other sites were located on a microplate of the North Fiji Basin. Two sites (Sites 832 and 831) were located in the intra-arc North Aoba Basin. Results of Leg 134 drilling showed that forearc deformation associated with the North d'Entrecasteaux Ridge and South d'Entrecasteaux Chain collision is distinct and different. The d'Entrecasteaux Zone is an Eocene subduction/obduction complex with a distinct submerged island arc. Collision and subduction of the North d'Entrecasteaux Ridge results in off scraping of ridge material and plating of the forearc with thrust sheets (flakes) as well as distinct forearc uplift. Some offscraped sedimentary rocks and surficial volcanic basement rocks of the North d'Entrecasteaux Ridge are being underplated to the New Hebrides Island forearc. In contrast, the South d'Entrecasteaux Chain is a serrated feature resulting in intermittent collision and subduction of seamounts. The collision of the Bougainville Guyot has indented the forearc and appears to be causing shortening through thrust faulting. In addition, we found that the Quaternary relative convergence rate between the New Hebrides Island Arc at the latitude of Espiritu Santo Island is as high as 14 to 16 cm/yr. The northward migration rate of the d'Entrecasteaux Zone was found the be ~2 to 4 cm/yr based on the newly determined Quaternary relative convergence rate. Using these rates we established the timing of initial d'Entrecasteaux Zone collision with the arc at ~3 Ma at the latitude of Epi Island and fixed the impact of the North d'Entrecasteaux Ridge upon Espiritu Santo Island at early Pleistocene (between 1.89 and 1.58 Ma). Dewatering is occurring in the North d'Entrecasteaux Ridge accretionary wedge, and the wedge is dryer than other previously studied accretionary wedges, such as Barbados. This could be the result of less sediment being subducted at the New Hebrides compared to the Barbados.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One hundred and sixty core samples were analyzed from Hole 832B to evaluate planktonic foraminiferal datum levels, and to zone and correlate the borehole succession. A total of 32 biostratigraphic events were recognized in the interval from Core 134-832B-59R through 134-832B-73R (702.49 through 846.4 meters below seafloor [mbsf]). These include 17 first appearance datum levels (FAD), 10 last appearance datum levels (LAD), and 5 coiling-change events in trochospiral species. The studied succession has been subdivided into nine planktonic foraminiferal zones (viz. downsequence N.22, N.21, N.20, N.19, N.18, N.17B, N.17A-N.16, N.15, N.8). The zonal index species occur in the expected stratigraphic order for zonal correlation, but some of the zonal boundaries may be diachronous compared to other localities in the western Pacific region. The FAD of Globorotalia (Truncorotalia) truncatulinoides (d' Orbigny) at 714.10 mbsf defines the boundary between the Zone N.22 and N.21; the boundary between Zones N.21 and N.20 at 741.73 mbsf is marked by the FAD of Globorotalia (Truncorotalia) tosaensis Takayanagi and Saito. The lower boundary of Zone N.20 is placed at 747.65 mbsf, based on the FAD of Globorotalia (Truncorotalia) crassaformis s.s. (Galloway and Wissler); the FAD of Sphaeroidinella dehiscens (Parker and Jones) at 756.61 mbsf defines the boundary between Zones N.18 and N.19. The FAD of Globorotalia (Globorotalia) tumida tumida (Brady) at 811.15 mbsf marks the boundary between Zones N.18 and N.17B. The boundary between Zones N.17B and N.17Ais placed at 843.52 mbsf, based on the FAD of Pulleniatina primalis Banner and Blow. A change in depositional conditions occurs at 846.4 mbsf just below the Zone N.17B lower boundary and is marked by the first appearance of abundant planktonic foraminifers in the region. The interval between 849.13 and 856.1 mbsf is placed in undifferentiated Zones N.17A and N.16, based on the rare occurrence of Neogloboquadrina acostaensis (Blow). The sparsely fossiliferous volcanic sandstone unit between 934.19 and 955.67 mbsf is positioned within Zone N.15 based on the presence of Globigerina (Zeaglobigerina) nepenthes Todd and Globigerinoides (Zeaglobigerina) druryi Arkers, and absence of N. acostaensis and Globorotalia (Jenkinsella) siakensis LeRoy. An unconformity between 955.67 and 971.80 mbsf may explain the absence of Zones N.14 through N.9. Basal Zone N.8 is recognized at 971.80 to 1008.60 mbsf by the presence of Globigerinoides sicanus De Stefani and the absence of Praeorbulina and Orbulina spp. The age of the succession between 702.49 and 1008.6 mbsf extends from the latest Pliocene or earliest Pleistocene (Zone N.22) to the earliest middle Miocene (Zone N.8). Among the datum levels evaluated here, the following events are considered to be the most reliable for time correlation in the studied region: the FADs of G. (T.) truncatulinoides, G. (T.) tosaensis, G. (T.) crassaformis, S. dehiscens, G. conglobatus (Brady), G. (G.) tumida tumida, and P. primalis; and the LADs of Globorotalia (Menardella) multicamerata Cushman and Jarvis, and Dentoglobigerina altispira altispira (Cushman and Jarvis). Application of a chronometric scale to part of the succession, suggests that the interval of calcareous sediment between 702.49 and 846.4 mbsf accumulated at about 30 m/m.y.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New petrographic and compositional data were reported for 143 samples of core recovered from Sites 832 and 833 during Ocean Drilling Program (ODP) Leg 134. Site 832 is located in the center and Site 833 is on the eastern edge of the North Aoba Basin, in the central part of the New Hebrides Island Arc. This basin is bounded on the east (Espiritu Santo and Malakula islands) and west (Pentecost and Maewo islands) by uplifted volcano-sedimentary ridges associated with collision of the d'Entrecasteaux Zone west of the arc. The currently active Central Belt volcanic front extends through the center of this basin and includes the shield volcanoes of Aoba, Ambrym, and Santa Maria islands. The oldest rocks recovered by drilling are the lithostratigraphic Unit VII Middle Miocene volcanic breccias in Hole 832B. Lava clasts are basaltic to andesitic, and the dominant phenocryst assemblage is plagioclase + augite + orthopyroxene + olivine. These clasts characteristically contain orthopyroxene, and show a low to medium K calc-alkaline differentiation trend. They are tentatively correlated with poorly documented Miocene calc-alkaline lavas and intrusives on adjacent Espiritu Santo Island, although this correlation demands that the measured K-Ar of 5.66 Ma for one clast is too young, due to alteration and Ar loss. Lava clasts in the Hole 832B Pliocene-Pleistocene sequence are mainly ankaramite or augite-rich basalt and basaltic andesite; two of the most evolved andesites have hornblende phenocrysts. These lavas vary from medium- to high-K compositions and are derived from a spectrum of parental magmas for which their LILE and HFSE contents show a broad inverse correlation with SiO2 contents. We hypothesize that this spectrum results from partial melting of an essentially similar mantle source, with the low-SiO2 high HFSE melts derived by lower degrees of partial melting probably at higher pressures than the high SiO2, low HFSE magmas. This same spectrum of compositions occurs on the adjacent Central Chain volcanoes of Aoba and Santa Maria, although the relatively high-HFSE series is known only from Aoba. Late Pliocene to Pleistocene lava breccias in Hole 833B contain volcanic clasts including ankaramite and augite + olivine + plagioclase-phyric basalt and rare hornblende andesite. These clasts are low-K compositions with flat REE patterns and have geochemical affinities quite different from those recovered from the central part of the basin (Hole 832B). Compositionally very similar lavas occur on Merelava volcano, 80 km north of Site 833, which sits on the edge of the juvenile Northern (Jean Charcot) Trough backarc basin that has been rifting the northern part of the New Hebrides Island Arc since 2-3 Ma. The basal sedimentary rocks in Hole 833B are intruded by a series of Middle Pliocene plagioclase + augite +/- olivine-phyric sills with characteristically high-K evolved basalt to andesite compositions, transitional to shoshonite. These are compositionally correlated with, though ~3 m.y. older than, the high-HFSE series described from Aoba. The calc-alkaline clasts in Unit VII of Hole 832B, correlated with similar lavas of Espiritu Santo Island further west, presumably were erupted before subduction polarity reversal perhaps 6-10 Ma. All other samples are younger than subduction reversal and were generated above the currently subduction slab. The preponderance in the North Aoba Basin and adjacent Central Chain islands of relatively high-K basaltic samples, some with transitional alkaline compositions, may reflect a response to collision of the d'Entrecasteaux Zone with the arc some 2-4 Ma. This may have modified the thermal structure of the subduction zone, driving magma generation processes to deeper levels than are present normally along the reminder of the New Hebrides Island Arc.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: