980 resultados para 130-807
Resumo:
We analyzed Nd and Sr isotopic compositions of Neogene fossil fish teeth from two sites in the Pacific in order to determine the effect of cleaning protocols and burial diagenesis on the preservation of seawater isotopic values. Sr is incorporated into the teeth at the time of growth; thus Sr isotopes are potentially valuable for chemostratigraphy. Nd isotopes are potential conservative tracers of paleocirculation; however, Nd is incorporated post-mortem, and may record diagenetic pore waters rather than seawater. We evaluated samples from two sites (Site 807A, Ontong Java Plateau and Site 786A, Izu-Bonin Arc) that were exposed to similar bottom waters, but have distinct lithologies and pore water chemistries. The Sr isotopic values of the fish teeth appear to accurately reflect contemporaneous seawater at both sites. The excellent correlation between the Nd isotopic values of teeth from the two sites suggests that the Nd is incorporated while the teeth are in chemical equilibrium with seawater, and that the signal is preserved over geologic timescales and subsequent burial. These data also corroborate paleoseawater Nd isotopic compositions derived from Pacific ferromanganese crusts that were recovered from similar water depths (Ling et al., 1997; doi:10.1016/S0012-821X(96)00224-5). This corroboration strongly suggests that both materials preserve seawater Nd isotope values. Variations in Pacific deepwater e-Nd values are consistent with predictions for the shoaling of the Isthmus of Panama and the subsequent initiation of nonradiogenic North Atlantic Deep Water that entered the Pacific via the Antarctic Circumpolar Current.
Resumo:
Deep-sea pore fluids are potential archives of ancient seawater chemistry. However, the primary signal recorded in pore fluids is often overprinted by diagenetic processes. Recent studies have suggested that depth profiles of Mg concentration in deep-sea carbonate pore fluids are best explained by a rapid rise in seawater Mg over the last 10-20 Myr. To explore this possibility we measured the Mg isotopic composition of pore fluids and carbonate sediments from Ocean Drilling Program (ODP) site 807. Whereas the concentration of Mg in the pore fluid declines with depth, the isotopic composition of Mg in the pore fluid increases from -0.78 per mil near the sediment-water interface to -0.15 per mil at 778 mbsf. The Mg isotopic composition of the sediment, with few important exceptions, does not change with depth and has an average d26Mg value of -4.72 per mil. We reproduce the observed changes in sediment and pore-fluid Mg isotope values using a numerical model that incorporates Mg, Ca and Sr cycling and satisfies existing pore-fluid Ca isotope and Sr data. Our model shows that the observed trends in magnesium concentrations and isotopes are best explained as a combination of two processes: a secular rise in the seawater Mg over the Neogene and the recrystallization of low-Mg biogenic carbonate to a higher-Mg diagenetic calcite. These results indicate that burial recrystallization will add Mg to pelagic carbonate sediments, leading to an overestimation of paleo-temperatures from measured Mg/Ca ratios. The Mg isotopic composition of foraminiferal calcite appears to be only slightly altered by recrystallization making it possible to reconstruct the Mg isotopic composition of seawater through time.
Resumo:
A numerical model which describes oxygen isotope exchange during burial and recrystallization of deep-sea carbonate is used to obtain information on how sea surface temperatures have varied in the past by correcting measured d18O values of bulk carbonate for diagenetic overprinting. Comparison of bulk carbonate and planktonic foraminiferal d18O records from ODP site 677A indicates that the oxygen isotopic composition of bulk carbonate does reflect changes in sea surface temperature and d18O. At ODP Site 690, we calculate that diagenetic effects are small, and that both bulk carbonate and planktonic foraminiferal d18O records accurately reflect Paleogene warming of high latitude surface oceans, biased from diagenesis by no more than 1°C. The same is likely to be true for other high latitude sites where sedimentation rates are low. At DSDP sites 516 and 525, the effects of diagenesis are more significant. Measured d18O values of Eocene bulk carbonates are more than 2? lower at deeply buried site 516 than at site 525, consistent with the model prediction that the effects of diagenesis should be proportional to sedimentation rate. Model-corrections reconcile the differences in the data between the two sites; the resulting paleotemperature reconstruction indicates a 4°C cooling of mid-latitude surface oceans since the Eocene. At low latitudes, the contrast in temperature between the ocean surface and bottom makes the carbonate d180 values particularly sensitive to diagenetic effects; most of the observed variations in measured d18O values are accounted for by diagenetic effects rather than by sea surface temperature variations. We show that the data are consistent with constant equatorial sea surface temperatures through most of the Cenozoic, with the possible exception of the early Eocene, when slightly higher temperatures are indicated. We suggest that the lower equatorial sea surface temperatures for the Eocene and Oligocene reported in other oxygen isotope studies are artifacts of diagenetic recrystallization, and that it is impossible to reconstruct accurately equatorial sea surface temperatures without explicitly accounting for diagenetic overprinting.