537 resultados para 1258
Resumo:
Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em História Medieval
Resumo:
UANL
Resumo:
The calcareous nannofossils of the Cenomanian/Turonian boundary interval of Sites 1258 and 1260 (Ocean Drilling Program Leg 207) have been studied in order to understand the depositional environment during Oceanic Anoxic Event 2 (OAE2) in the equatorial Atlantic. Nannofossil assemblages show a significant change in relative abundances during the positive d13Corg excursion interval. The strong increase of the high productivity indicator Zeugrhabdotus erectus and the simultaneous decrease of the oligotrophic taxa Watznaueria barnesiae and Watznaueria fossacincta are indicative of enhanced fertility. The decrease of Eprolithus floralis may be attributed to the surface-water temperature increase during OAE2, which is, however, not very significant (~2-3 °C), as suggested by published TEX86 data. It seems more likely that the decrease of E. floralis during OAE2 was evoked by the breakdown of water-column stratification, indicating it as a deep-dwelling species, which prefers stratified waters with a deep nutricline. Prediscosphaera spp. and Retecapsa ficula, which show a significant increase in relative abundances during OAE2, seem to prefer eutrophic environments, while Amphizygus brooksii and Zeugrhabdotus noeliae lower surface-water fertility. Gartnerago segmentatum, Broinsonia spp., Watznaueria biporta, and Seribiscutum gaultensis decrease in abundances during OAE2. It is not clear if they preferred an oligotrophic environment, cooler surface-waters, or if they were inhabitants of the lower photic zone. Published geochemical data suggest that enhanced fertility and higher temperatures during OAE2 may have been caused by submarine volcanic activity through the release of biolimiting micronutrients into the ocean and carbon dioxide into the atmosphere. The breakdown of water-column stratification may have increased further nutrient availability.
Resumo:
The mid-Cretaceous is widely considered the archetypal ice-free greenhouse interval in Earth history, with a thermal maximum around Cenomanian-Turonian boundary time (ca. 90 Ma). However, contemporaneous glaciations have been hypothesized based on sequence stratigraphic evidence for rapid sea-level oscillation and oxygen isotope excursions in records generated from carbonates of questionable preservation and/or of low resolution. We present new oxygen isotope records for the mid-Cenomanian Demerara Rise that are of much higher resolution than previously available, taken from both planktic and benthic foraminifers, and utilizing only extremely well preserved glassy foraminifers. Our records show no evidence of glaciation, calling into question the hypothesized ice sheets and rendering the origin of inferred rapid sea-level oscillations enigmatic. Simple mass-balance calculations demonstrate that this Cretaceous sea-level paradox is unlikely to be explained by hidden ice sheets existing below the limit of d18O detection.
Resumo:
Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to ~54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 {plus minus} 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 {plus minus} 0.05 Ma for the early Eocene ash -17, and 65.250 {plus minus} 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radiometric geochronology is much more challenging than previously thought.