505 resultados para 1243
Resumo:
Mode of access: Internet.
Resumo:
Includes index.
Resumo:
John Frazer, Professor, trained at the Architectural Association, taught first at Cambridge University and then the AA in the 1970s and again in the '90s. He was Head of School of Design Research History and Criticism at the University of Ulster in the 1980s, he also ran a systems and design consultancy with his wife Julia (including projects for Cedric Price and Walter Segal) and was founder and chairman of Autographics software. He is currently Swire Chair Professor and Head of School of Design in Hong Kong.----- This is a very personal perspective on a concept of universal and future significance. It is personal, both is the sense that it is an unashamedly biased view of both the significance of the project, and the nature of that significance and because the author was personally involved as one of the consultants on GENERATOR and subsequently involved Cedric Price in its educational application at the Architectural Association. GENERATOR is still very much alive and was still developing whilst this chapter was being written.
Resumo:
With the rising levels of CO2 in the atmosphere, low-emission technologies with carbon dioxide capture and storage (CCS) provide one option for transforming the global energy infrastructure into a more environmentally, climate sustainable system. However, like many technology innovations, there is a social risk to the acceptance of CCS. This article presents the findings of an engagement process using facilitated workshops conducted in two communities in rural Queensland, Australia, where a demonstration project for IGCC with CCS has been announced. The findings demonstrate that workshop participants were concerned about climate change and wanted leadership from government and industry to address the issue. After the workshops, participants reported increased knowledge and more positive attitudes towards CCS, expressing support for the demonstration project to continue in their local area. The process developed is one that could be utilized around the world to successfully engage communities on the low carbon emission technology options.
Resumo:
Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus for the assessment of osteoporosis was first described within this journal 25 years ago. It was recognized in 2006 by Universities UK as being one of the ‘100 discoveries and developments in UK Universities that have changed the world’ over the past 50 years. In 2008, the UK's Department of Health also recognized BUA assessment of osteoporosis in a publication highlighting 11 projects that have contributed to ‘60 years of NHS research benefiting patients’. The BUA technique has been extensively clinically validated and is utilized worldwide, with at least seven commercial systems currently providing calcaneal BUA measurement. However, there is still no fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone. This review aims to provide an ‘engineering in medicine’ perspective and proposes a new paradigm based upon phase cancellation due to variation in propagation transit time across the receive transducer face to explain the non-linear relationship between BUA and bone volume fraction in cancellous bone.