997 resultados para 123-766
Resumo:
The sediments of the Argo and Gascoyne abyssal plains are generally lean in organic matter, are immature, and contain hydrocarbons trapped during sediment deposition rather than those generated during sediment catagenesis. TOC concentrations in the Argo Abyssal Plain Cenozoic sediments are 0.5 wt%, and organic matter appears to be from mixed marine and reworked, degraded, organic matter sources, with the latter being contributed by turbidity flows from the nearby continental margin. TOC concentrations within the Cenozoic sediments of the Gascoyne Abyssal Plain are mostly undetectable (<0.1 wt%). Biomarker distributions determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GCMS) indicate that organic matter extracted from the Lower Cretaceous sediments from both sites is predominantly marine with varying contributions from terrestrial organic matter. The specific marine biomarker, 24-n-propylcholestane is in relatively high abundance in all samples. In addition, the relatively high abundance of the 4-methylsteranes with the 23,24-dimethyl side chain (in all samples) indicates significant dinoflagellate contributions and marine organic matter. The ratios of n-C27/n-C17 reflect relative contributions of marine vs. terrestrial organic matter. TOC, while generally low at Argo, is relatively high near the Barremian/Aptian boundary (one sample has a TOC of 5.1 wt%) and the Aptian/Albian boundary (up to 1.3 wt% TOC), and two samples from the Barremian and Aptian sections contain relatively high proportions of terrestrial organic carbon. TOC values in the Lower Cretaceous sediments from Gascoyne Abyssal Plain are low (<0.1 wt%) near the Aptian/Barremian boundary. TOC values are higher in older sediments, with maxima in the upper Barremian (1.02 wt%), the Barremian/Hauterivian (0.6 wt%), and Valanginian (1.8 wt%). Sediments from the upper Barremian contain higher amounts of terrestrial organic carbon than older sediments.
Resumo:
The Early Cretaceous basaltic rocks obtained from Sites 765 and 766 in the eastern Indian Ocean floor were mostly iron-rich normal mid-ocean ridge basalts (N-MORB), which were derived from a depleted mantle source having strongly light rare earth element (LREE)-depleted rare-earth patterns and a high titanium/zirconium (Ti/Zr) ratio. Basaltic rocks in the upper part of the Site 765 basement section include megacrysts and gabbroic fragments of widely varying mineral chemistry. These megacrysts range from An90 plagioclase, including highly magnesian basaltic glass coexisting with augite of Mg# (= 100 Mg/[Fe+Mg]) at 85, to An50 plagioclase coexisting with hypersthene. This varying mineralogy of megacrysts and gabbroic fragments indicates that a considerable degree of fractional crystallization took place in the magma chamber. The unusual negative correlation between incompatible elements (e.g., TiO2) and FeO*/MgO observed among Site 765 basement basalts and fresh volcanic glasses suggest source-mantle heterogeneity in terms of FeO*/MgO. Strontium isotope ratios (87Sr/86Sr) of the basaltic rocks from both sites are between 0.7027 and 0.7033 and are comparable to those of mid-Indian Ocean ridge basalts (MIORB). The basalt pebbles encountered in the sedimentary section may have been transported from the basement highs nearer the Australian continent and include basaltic compositions ranging from primitive N-MORBs to evolved enriched (E)-MORBs. Their mantle source was not as depleted as that of the basement basalts. These rocks may be the products of earlier volcanism that took place during the rifting of the Australian continent.
Resumo:
During Ocean Drilling Program Leg 123, two sites were drilled in the deep Indian Ocean. Physical properties were measured in soft Quaternary and Lower Cretaceous sediments to relatively fresh, glass-bearing pillow lavas and massive basalts. Porosities ranged from 89% near the seafloor to 1.6% for the dense basalts. This self-consistent set of measurements permitted some descriptive models of physical properties to be more rigorously tested than before. Predictive relationships between porosity and compressional-wave velocity have generally been based upon the Wyllie time average equation. However, this equation does not adequately describe the actual relationship between these two parameters, and many have attempted to improve it. In most cases, models were derived by testing them against a set of data representing a relatively narrow range of porosity values. Similarly, the use of the Wyllie equation has often been justified by a pseudolinear fit to the data over a narrow range of porosity values. The limitations of the Wyllie relationship have been re-emphasized here. A semi-empirical acoustic impedance equation is developed that provides a more accurate porosity-velocity transform, using realistic material parameters, than has hitherto been possible. A closer correlation can be achieved with this semi-empirical relationship than with more theoretically based equations. In addition, a satisfactory empirical equation can be used to describe the relationship between thermal conductivity and porosity. If enough is known about core sample lithologies to provide estimates of the matrix and pore water parameters, then these predictive equations enable one to describe completely the behavior of a saturated rock core in terms of compressional-wave velocity, thermal conductivity, porosity, and bulk density.
Resumo:
The results of experiments in 40Ar/39Ar age dating using fresh basement material from Sites 765 and 766 of Leg 123 of the Ocean Drilling Program are inconsistent and cannot be used to constrain the basement age of the Argo Abyssal Plain in the Indian Ocean. However, a celadonite sample, which was precipitated during a low-temperature alteration event that affected the basement at Site 765, yielded a K-Ar age of 155.3 ±3.4 Ma. Celadonites, which have been dated using Rb-Sr methods for basement in the Atlantic Ocean (Staudigel et al., 1981, doi:10.1016/0012-821X(81)90186-2) and by K-Ar methods for the Troodos Ophiolite (Staudigel et al., 1986, doi:10.1130/0091-7613(1986)14<72:AASAOC>2.0.CO;2), and for sediments from the Pacific Ocean (Peterson et al., 1986, doi:10.2973/dsdp.proc.92.132.1986) yield ages that are up to 15 Ma younger than the age for the formation of basement. Thus, the celadonite age is retained as a reliable minimum age for basement at Site 765. This radiometric age is inconsistent with biostratigraphic ages, which indicate a maximum of late Berriasian (approximately 140 Ma) for Site 765, but is consistent with geophysical interpretations of marine magnetic anomalies and with the early north-south seafloor spreading history of the Argo Abyssal Plain region of the Indian Ocean.
Resumo:
During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 26 1, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 26 1, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud (1992) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been.caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.
Resumo:
A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measurements, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core. Anelastic strain recovery is a relatively new technique. Because use of the method has extended to a wider range of rock types, the literature has begun to include examples of rocks that contracted with time. Strong circumstantial evidence exists to suggest that core-sample contractions result from the slow diffusion of pore fluids from a preexisting microcrack structure that permits the rock to deflate at a greater rate than the expansion caused by anelastic strain recovery. Both expansions and contractions of the Leg 123 cores were observed. The basalt cores have clearly been intersected by an abundance of preexisting fractures, some of which pass right through the samples, but many are intercepted or terminate within the rock matrix. Thus, the behavior of the core samples will be influenced not only by the properties of the rock matrix between the fractures, but also by how these macro- and micro-scale fractures mutually interact. The strain-recovery curves recorded during Leg 123 for each of the 15 basalt core samples may reflect the result of two competing time dependent processes: anelastic strain recovery and pore pressure recovery. Were these the only two processes to influence the gauge responses, then one might expect that given the additional information required, established theoretical models might be used to determine consistent stress orientations and reliable stress magnitudes. However, superimposed upon these competing processes is their respective interaction with the preexisting fractures that intersect each core. Evidence from our experiments and observations suggests that these fractures have a dominating influence on the characteristics of the recovery curves and that their effects are complex.
Resumo:
Two of five holes drilled at two separate sites during Leg 123 of the Ocean Drilling Program intersected thick and relatively complete sections of Upper Cretaceous-Paleogene nannofossiliferous sediments. Although dominated by turbidite deposition in the upper part, Hole 765C contains a thick and relatively complete Albian-Oligocene section, including a particularly thick Aptian interval, with abundant and fairly well-preserved nannofossils. Several unconformities are confidently interpreted in this section that span much of the Santonian, late Campanian, Maestrichtian, late Eocene, and early Oligocene. Hole 766A contains a thick and relatively complete Albian-lower Eocene section having generally abundant and well-preserved nannofossils. Several unconformities also have been identified in this section that span much of the Coniacian, early Campanian, Maestrichtian, and late Eocene through early Pliocene. The chronostratigraphic position and length of all these unconformities may have considerable significance for reconstructing the sedimentary history and for interpreting the paleoceanography of this region. A particularly thick section of upper Paleocene-lower Eocene sediments, including a complete record across the Paleocene/Eocene boundary, also was cored in Hole 766A that contains abundant and diverse nannofossil assemblages. Although assemblages from this section were correlated successfully using a standard low-latitude zonation, difficulties were encountered that reduced biostratigraphic resolution. Several lines of evidence suggest a mid-latitude position for Site 766 during this time, including (1) high assemblage diversity characteristic of mid-latitude zones of upwelling and (2) absence of certain ecologically controlled markers found only in low latitudes.
Resumo:
Twenty-one samples, ranging in depth from 0 to 150 meters below seafloor (mbsf), were obtained from Leg 123 Sites 765 and 766. All samples were tested for Atterberg limits: 14 for laboratory vane shear strength and seven for uniaxial consolidation. Based on the determined Atterberg limits, along with shipboard measurements of water content, the sediment appears to be underconsolidated from 0 to 40 mbsf at Site 765 and from 0 to 80 mbsf at Site 766. Normal consolidation trends were observed for the sediments below these depths. Vane shear strengths, when compared with calculated values for a normally consolidated clay, indicate underconsolidated sediment at both sites. However, the use of Atterberg limit and vane shear strength data to assess consolidation state is complicated by the presence of silt-sized calcium carbonate in the form of nannofossil ooze. Thus, uniaxial-consolidation test data were analyzed to determine the overconsolidation ratios (OCR) and sediment compressibilities. OCR values were found to be less than one (underconsolidated) at both sites, using two separate methods of analysis.
Resumo:
During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud ( 1992 ) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M 11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.