936 resultados para 120405 Models of Engineering Design
Resumo:
Engineering Your Future: An Australasian Guide, 2nd Edition, is the ideal textbook for undergraduate students beginning their engineering studies. Building on the success of the popular 1st edition, this new edition continues the strong and practical emphasis on skills that are essential for engineering problem-solving and design. Numerous topical and locally focused examples of projects across the broad range of engineering disciplines help to graphically demonstrate the role and responsibilities of a professional engineer. Themes of sustainability, ethical practice and effective communication are constant throughout the text. In addition, its many exercises and project activities will encourage students to put key engineering principles and skills into practice.
Resumo:
In the coming decades, the mining industry faces the dual challenge of lowering both its water and energy use. This presents a difficulty since technological advances that decrease the use of one can increase the use of the other. Historically, energy and water use have been modelled independently, making it difficult to evaluate the true costs and benefits from water and energy improvements. This paper presents a hierarchical systems model that is able to represent interconnected water and energy use at a whole of site scale. In order to explore the links between water and energy four technologies advancements have been modelled: use of dust suppression additives, the adoption of thickened tailings, the transition to dry processing and the incorporation of a treatment plant. The results show a synergy between decreased water and energy use for dust suppression additives, but a trade-off for the others.
Resumo:
Models capturing the connectivity between different domains of a design, e.g. between components and functions, can provide a tool for tracing and analysing aspects of that design. In this paper, video experiments are used to explore the role of cross-domain modelling in building up information about a design. The experiments highlight that cross-domain modelling can be a useful tool to create and structure design information. Findings suggest that consideration of multiple domains encourages discussion during modelling, helps identify design aspects that might otherwise be overlooked, and can help promote consideration of alternative design options. Copyright © 2002-2012 The Design Society. All rights reserved.
Resumo:
The 21st century will see monumental change. Either the human race will use its knowledge and skills and change the way it interacts with the environment, or the environment will change the way it interacts with its inhabitants. In the first case, the focus of this book, we would see our sophisticated understanding in areas such as physics, chemistry, engineering, biology, planning, commerce, business and governance accumulated over the last 1,000 years brought to bear on the challenge of dramatically reducing our pressure on the environment. The second case however is the opposite scenario, involving the decline of the planet’s ecosystems until they reach thresholds where recovery is not possible, and following which we have no idea what happens. For instance, if we fail to respond to Sir Nicolas Stern’s call to meet appropriate stabilisation trajectories for greenhouse gas emissions, and we allow the average temperature of our planets surface to increase by 4-6 degrees Celsius, we will see staggering changes to our environment, including rapidly rising sea level, withering crops, diminishing water reserves, drought, cyclones, floods… allowing this to happen will be the failure of our species, and those that survive will have a deadly legacy. In this update to the 1997 International Best Seller, Factor Four, Ernst von Weizsäcker again leads a team to present a compelling case for sector wide advances that can deliver significant resource productivity improvements over the coming century. The purpose of this book is to inspire hope and to then inform meaningful action in the coming decades to respond to the greatest challenge our species has ever faced – that of living in harmony with our planet and its other inhabitants.
Resumo:
The continuous changing impacts appeared in all solution understanding approaches in the projects management field (especially in the construction field of work) by adopting dynamic solution paths. The paper will define what argue to be a better relational model for project management constraints (time, cost, and scope). This new model will increase the success factors of any complex program / project. This is a qualitative research adopting a new avenue of investigation by following different approach of attributing project activities with social phenomena, and supporting phenomenon with field of observations rather than mathematical method by emerging solution from human, and ants' colonies successful practices. The results will show the correct approach of relation between the triple constraints considering the relation as multi agents system having specified communication channels based on agents locations. Information will be transferred between agents, and action would be taken based on constraint agents locations in the project structure allowing immediate changes abilities in order to overcome issues of over budget, behind schedule, and additional scope impact. This is complex adaptive system having self organizes technique, and cybernetic control. Resulted model can be used for improving existing project management methodologies.
Resumo:
BACKGROUND Research on engineering design is a core area of concern within engineering education and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. Understanding the factors related to design experiences in education and how they affect student practice can help educators as well as designers to leverage these factors as part of the design process. PURPOSE This study investigated the design practices of first-year engineering students’ and their experiences with a first-year engineering course design project. The research questions that guided the investigation were: 1. From a student perspective, what design parameters or criteria are most important? 2. How does this perspective impact subsequent student design practice throughout the design process? DESIGN/METHOD The authors employed qualitative multi-case study methods (Miles & Huberman, 1994) in order to the answer the research questions. Participant teams were observed and video recorded during team design meetings in which they researched the background for the design problem, brainstormed and sketched possible solutions, as well as built prototypes and final models of their design solutions as part of a course design project. Analysis focused on explanation building (Yin, 2009) and utilized within-case and cross-case analysis (Miles & Huberman, 1994). RESULTS We found that students focused disproportionally on the functional parameter, i.e. the physical implementation of their solution, and the possible/applicable parameter, i.e. a possible and applicable solution that benefited the user, in comparison to other given parameters such as safety and innovativeness. In addition, we found that individual teams focused on the functional and possible/ applicable parameters in early design phases such as brainstorming/ ideation and sketching. When prompted to discuss these non-salient parameters (from the student perspective) in the final design report, student design teams often used a post-hoc justification to support how the final designs fit the parameters that they did not initially consider. CONCLUSIONS This study suggests is that student design teams become fixated on (and consequently prioritize) certain parameters they interpret as important because they feel these parameters were described more explicitly in terms how they were met and assessed. Students fail to consider other parameters, perceived to be less directly assessable, unless prompted to do so. Failure to consider other parameters in the early design phases subsequently affects their approach in design phases as well. Case studies examining students’ study strategies within three Australian Universities illustrate similarities with some student approaches to design.
Resumo:
Creativity is increasingly recognised as an essential component of engineering design. This paper describes an exploratory study into the nature and importance of creativity in engineering design problem solving in relation to the possible impact of software design tools. The first stage of the study involved an empirical investigation in the form of a case study of the use of standard CAD tool sets and the development of a systems engineering software support tool. It was found that there were several ways in which CAD influenced the creative process, including enhancing visualisation and communication, premature fixation, circumscribed thinking and bounded ideation. The tool development experience uncovered the difficulty in supporting creative processes from the developer's perspective. The issues were the necessity of making assumptions, achieving a balance between structure and flexibility, and the pitfalls of satisfying user wants and needs. The second part of the study involved the development of a model of the creative problem solving process in engineering design. This provided a possible explanation for why purpose designed engineering software tools might encourage an analytical problem solving approach and discourage a more creative approach.