911 resultados para 120403 Engineering Design Methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every year, thousand of surgical treatments are performed in order to fix up or completely substitute, where possible, organs or tissues affected by degenerative diseases. Patients with these kind of illnesses stay long times waiting for a donor that could replace, in a short time, the damaged organ or the tissue. The lack of biological alternates, related to conventional surgical treatments as autografts, allografts, e xenografts, led the researchers belonging to different areas to collaborate to find out innovative solutions. This research brought to a new discipline able to merge molecular biology, biomaterial, engineering, biomechanics and, recently, design and architecture knowledges. This discipline is named Tissue Engineering (TE) and it represents a step forward towards the substitutive or regenerative medicine. One of the major challenge of the TE is to design and develop, using a biomimetic approach, an artificial 3D anatomy scaffold, suitable for cells adhesion that are able to proliferate and differentiate themselves as consequence of the biological and biophysical stimulus offered by the specific tissue to be replaced. Nowadays, powerful instruments allow to perform analysis day by day more accurateand defined on patients that need more precise diagnosis and treatments.Starting from patient specific information provided by TC (Computed Tomography) microCT and MRI(Magnetic Resonance Imaging), an image-based approach can be performed in order to reconstruct the site to be replaced. With the aid of the recent Additive Manufacturing techniques that allow to print tridimensional objects with sub millimetric precision, it is now possible to practice an almost complete control of the parametrical characteristics of the scaffold: this is the way to achieve a correct cellular regeneration. In this work, we focalize the attention on a branch of TE known as Bone TE, whose the bone is main subject. Bone TE combines osteoconductive and morphological aspects of the scaffold, whose main properties are pore diameter, structure porosity and interconnectivity. The realization of the ideal values of these parameters represents the main goal of this work: here we'll a create simple and interactive biomimetic design process based on 3D CAD modeling and generative algorithmsthat provide a way to control the main properties and to create a structure morphologically similar to the cancellous bone. Two different typologies of scaffold will be compared: the first is based on Triply Periodic MinimalSurface (T.P.M.S.) whose basic crystalline geometries are nowadays used for Bone TE scaffolding; the second is based on using Voronoi's diagrams and they are more often used in the design of decorations and jewellery for their capacity to decompose and tasselate a volumetric space using an heterogeneous spatial distribution (often frequent in nature). In this work, we will show how to manipulate the main properties (pore diameter, structure porosity and interconnectivity) of the design TE oriented scaffolding using the implementation of generative algorithms: "bringing back the nature to the nature".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the possibilities of integrating cost information and engineering design. Special emphasis is put on finding the potential of using the activity-based costing (ABC) method. Today, the problem of cost estimation in engineering design is that there are two separate extremes of knowledge. On the one extreme, the engineers model the technical parametres behindcosts in great detail but do not get appropriate cost information to their elegant models. On the other extreme, the accounting professionals are stuck with traditional cost accounting methods driven by the procedures and cycles of financial accounting. Therefore, in many cases, the cost information needs of various decision making groups, for example design engineers, are not served satisfactorily. This paper studies if the activity-based costing (ABC) method could offer a compromise between the two extremes. Recognizing activities and activity chains as well as activity and cost drivers could be specially beneficial for design engineers. Also, recognizing the accurate and reliable product costs of existing products helps when doing variant design. However, ABC is not at its best if the cost system becomes too complicated. This is why a comprehensive ABC-cost information system with detailed cost information for the use of design engineers should be examined critically. ABC is at its best when considering such issues as which activities drive costs, the cost of product complexity, allocating indirect costs on the products, the relationships between processes and costs, and the cost of excess capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this thesis is to analyse activity-based costing (ABC) and possible modified versions ofit in engineering design context. The design engineers need cost information attheir decision-making level and the cost information should also have a strong future orientation. These demands are high because traditional management accounting has concentrated on the direct actual costs of the products. However, cost accounting has progressed as ABC was introduced late 1980s and adopted widely bycompanies in the 1990s. The ABC has been a success, but it has gained also criticism. In some cases the ambitious ABC systems have become too complex to build,use and update. This study can be called an action-oriented case study with some normative features. In this thesis theoretical concepts are assessed and allowed to unfold gradually through interaction with data from three cases. The theoretical starting points are ABC and theory of engineering design process (chapter2). Concepts and research results from these theoretical approaches are summarized in two hypotheses (chapter 2.3). The hypotheses are analysed with two cases (chapter 3). After the two case analyses, the ABC part is extended to cover alsoother modern cost accounting methods, e.g. process costing and feature costing (chapter 4.1). The ideas from this second theoretical part are operationalized with the third case (chapter 4.2). The knowledge from the theory and three cases is summarized in the created framework (chapter 4.3). With the created frameworkit is possible to analyse ABC and its modifications in the engineering design context. The framework collects the factors that guide the choice of the costing method to be used in engineering design. It also illuminates the contents of various ABC-related costing methods. However, the framework needs to be further tested. On the basis of the three cases it can be said that ABC should be used cautiously when formulating cost information for engineering design. It is suitable when the manufacturing can be considered simple, or when the design engineers are not cost conscious, and in the beginning of the design process when doing adaptive or variant design. If the design engineers need cost information for the embodiment or detailed design, or if manufacturing can be considered complex, or when design engineers are cost conscious, the ABC has to be always evaluated critically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes two new approaches for the sensitivity analysis of multiobjective design optimization problems whose performance functions are highly susceptible to small variations in the design variables and/or design environment parameters. In both methods, the less sensitive design alternatives are preferred over others during the multiobjective optimization process. While taking the first approach, the designer chooses the design variable and/or parameter that causes uncertainties. The designer then associates a robustness index with each design alternative and adds each index as an objective function in the optimization problem. For the second approach, the designer must know, a priori, the interval of variation in the design variables or in the design environment parameters, because the designer will be accepting the interval of variation in the objective functions. The second method does not require any law of probability distribution of uncontrollable variations. Finally, the authors give two illustrative examples to highlight the contributions of the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the problems in modern structural design can be described with a set of equation; solutions of these mathematical models can lead the engineer and designer to get info during the design stage. The same holds true for physical-chemistry; this branch of chemistry uses mathematics and physics in order to explain real chemical phenomena. In this work two extremely different chemical processes will be studied; the dynamic of an artificial molecular motor and the generation and propagation of the nervous signals between excitable cells and tissues like neurons and axons. These two processes, in spite of their chemical and physical differences, can be both described successfully by partial differential equations, that are, respectively the Fokker-Planck equation and the Hodgkin and Huxley model. With the aid of an advanced engineering software these two processes have been modeled and simulated in order to extract a lot of physical informations about them and to predict a lot of properties that can be, in future, extremely useful during the design stage of both molecular motors and devices which rely their actions on the nervous communications between active fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What motivates students to perform and pursue engineering design tasks? This study examines this question by way of three Learning Through Service (LTS) programs: 1) an on-going longitudinal study examining the impacts of service on engineering students, 2) an on-going analysis of an international senior design capstone program, and 3) an on-going evaluation of an international graduate-level research program. The evaluation of these programs incorporates both qualitative and quantitative methods, utilizing surveys, questionnaires, and interviews, which help to provide insight on what motivates students to do engineering design work. The quantitative methods were utilized in analyzing various instruments including: a Readiness assessment inventory, Intercultural Development Inventory, Sustainable Engineering through Service Learning survey, the Impacts of Service on Engineering Students’ survey, Motivational narratives, as well as some analysis for interview text. The results of these instruments help to provide some much needed insight on how prepared students are to participate in engineering programs. Additional qualitative methods include: Word clouds, Motivational narratives, as well as interview analysis. This thesis focused on how these instruments help to determine what motivates engineering students to pursue engineering design tasks. These instruments aim to collect some more in-depth information than the quantitative instruments will allow. Preliminary results suggest that of the 120 interviews analyzed Interest/Enjoyment, Application of knowledge and skills, as well as gaining knowledge are key motivating factors regardless of gender or academic level. Together these findings begin to shed light on what motivates students to perform engineering design tasks, which can be applied for better recruitment and retention in university programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"...Final report ... sponsored by Signal Corps Engineering Laboratories, Fort Monmouth, N.J., and the Electronic Components Laboratory of the Wright Air Development Center, Wright-Patterson Air Force Base, Ohio."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Firefly Algorithm is a recent swarm intelligence method, inspired by the social behavior of fireflies, based on their flashing and attraction characteristics [1, 2]. In this paper, we analyze the implementation of a dynamic penalty approach combined with the Firefly algorithm for solving constrained global optimization problems. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La ingeniería de glicanos es un área de investigación emergente, la que posee múltiples aplicaciones en medicina. Mediante esta herramienta se intentará reducir la flexibilidad de las uniones glicosídicas de antígenos tumorales, como la del antígeno T (Galbeta3GalNAcalfa-Ser/Thr). Aquí se realizarán las menores alteraciones posibles en la topología de glicanos que generen la mejor respuesta inmune hacia el antígeno de interés. Por otra parte, se buscará ligandos de alta afinidad que interaccionen con lectinas involucradas en diseminación de metástasis. Mediante ensayos teóricos de Docking se tratará de hallar modificaciones topológicas de glicanos que potencialmente tengan propiedades anti-adhesivas para células tumorales. Este proyecto constará de tres etapas: una teórica, utilizando programas de cálculos para ensayos de Docking y mínimos energéticos de glicanos. Otra de síntesis, generando los glicoconjugados sugeridos en la etapa anterior. En la última, se verificará si estos glicanos rediseñados adquirieron las propiedades biológicas deseadas. Así se determinará si generan una respuesta inmune que reconozca antígenos y células tumorales. También, se analizarán las propiedades anti-adhesivas de los glicanos utilizando diferentes modelos experimentales. Finalmente, se determinará si los inmunógenos producidos y/o glicoconjugados rediseñados poseen efecto en el desarrollo tumoral y sobrevida animal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The aim of this report is to describe the main characteristics of the design, including response rates, of the Cornella Health Interview Survey Follow-up Study. Methods: The original cohort consisted of 2,500 subjects (1,263 women and 1,237 men) interviewed as part of the 1994 Cornella Health Interview Study. A record linkage to update the address and vital status of the cohort members was carried out using, first a deterministic method, and secondly a probabilistic one, based on each subject's first name and surnames. Subsequently, we attempted to locate the cohort members to conduct the phone follow-up interviews. A pilot study was carried out to test the overall feasibility and to modify some procedures before the field work began. Results: After record linkage, 2,468 (98.7%) subjects were successfully traced. Of these, 91 (3.6%) were deceased, 259 (10.3%) had moved to other towns, and 50 (2.0%) had neither renewed their last municipal census documents nor declared having moved. After using different strategies to track and to retain cohort members, we traced 92% of the CHIS participants. From them, 1,605 subjects answered the follow-up questionnaire. Conclusion: The computerized record linkage maximized the success of the follow-up that was carried out 7 years after the baseline interview. The pilot study was useful to increase the efficiency in tracing and interviewing the respondents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.