80 resultados para 110601


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presented the characteristics of the loading impact on the residuum of a transfemoral amputee fitted with an osseointegrated fixation during a fall for the first time. The maximum force (1,145 N = 132 % of the body weight and moments (153 N.m) were applied on the long and medio-lateral axes, respectively, approximately 0.85 s after heel contact of the prosthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knee forces and moments estimated by inverse dynamics and directly measured by a multiaxial transducer were compared during the gait of a transfemoral amputee. The estimated and directly measured forces and moments were relatively close. However, 3D inverse dynamics estimated only partially the forces and moments associated with the deformation of the prosthetic foot and locking of knee mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In sport and exercise biomechanics, forward dynamics analyses or simulations have frequently been used in attempts to establish optimal techniques for performance of a wide range of motor activities. However, the accuracy and validity of these simulations is largely dependent on the complexity of the mathematical model used to represent the neuromusculoskeletal system. It could be argued that complex mathematical models are superior to simple mathematical models as they enable basic mechanical insights to be made and individual-specific optimal movement solutions to be identified. Contrary to some claims in the literature, however, we suggest that it is currently not possible to identify the complete optimal solution for a given motor activity. For a complete optimization of human motion, dynamical systems theory implies that mathematical models must incorporate a much wider range of organismic, environmental and task constraints. These ideas encapsulate why sports medicine specialists need to adopt more individualized clinical assessment procedures in interpreting why performers' movement patterns may differ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent article in the Journal of Science and Medicine in Sport by Chapman et al.1 reported data from an empirical investigation comparing lower extremity joint motions, joint coordination and muscle recruitment in expert and novice cyclists. 3D kinematic and intramuscular electromyographic (EMG) analyses revealed no differences between expert and novice cyclists for normalised joint angles and velocities of the pelvis, hip, knee and ankle. However, significant differences in the strength of sagittal plane kinematics for hip–ankle and knee–ankle joint couplings were reported, with expert cyclists displaying tighter coupling relationships than novice cyclists. Furthermore, significant differences between expert and novice cyclists for all muscle recruitment parameters, except timing of peak EMG amplitude, were also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the study of complex neurobiological movement systems, measurement indeterminacy has typically been overcome by imposing artificial modelling constraints to reduce the number of unknowns (e.g., reducing all muscle, bone and ligament forces crossing a joint to a single vector). However, this approach prevents human movement scientists from investigating more fully the role, functionality and ubiquity of coordinative structures or functional motor synergies. Advancements in measurement methods and analysis techniques are required if the contribution of individual component parts or degrees of freedom of these task-specific structural units is to be established, thereby effectively solving the indeterminacy problem by reducing the number of unknowns. A further benefit of establishing more of the unknowns is that human movement scientists will be able to gain greater insight into ubiquitous processes of physical self-organising that underpin the formation of coordinative structures and the confluence of organismic, environmental and task constraints that determine the exact morphology of these special-purpose devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study established that the core principle underlying categorisation of activities have the potential to provide more comprehensive outcomes than the recognition of activities because it takes into consideration activities other than directional locomotion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION In their target article, Yuri Hanin and Muza Hanina outlined a novel multidisciplinary approach to performance optimisation for sport psychologists called the Identification-Control-Correction (ICC) programme. According to the authors, this empirically-verified, psycho-pedagogical strategy is designed to improve the quality of coaching and consistency of performance in highly skilled athletes and involves a number of steps including: (i) identifying and increasing self-awareness of ‘optimal’ and ‘non-optimal’ movement patterns for individual athletes; (ii) learning to deliberately control the process of task execution; and iii), correcting habitual and random errors and managing radical changes of movement patterns. Although no specific examples were provided, the ICC programme has apparently been successful in enhancing the performance of Olympic-level athletes. In this commentary, we address what we consider to be some important issues arising from the target article. We specifically focus attention on the contentious topic of optimization in neurobiological movement systems, the role of constraints in shaping emergent movement patterns and the functional role of movement variability in producing stable performance outcomes. In our view, the target article and, indeed, the proposed ICC programme, would benefit from a dynamical systems theoretical backdrop rather than the cognitive scientific approach that appears to be advocated. Although Hanin and Hanina made reference to, and attempted to integrate, constructs typically associated with dynamical systems theoretical accounts of motor control and learning (e.g., Bernstein’s problem, movement variability, etc.), these ideas required more detailed elaboration, which we provide in this commentary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is often postulated that an increased hip to shoulder differential angle (`X-Factor') during the early downswing better utilises the stretch-shorten cycle and improves golf performance. The current study aims to examine the potential relationship between the X-Factor and performance during the tee-shot. Seven golfers with handicaps between 0 and 10 strokes comprised the low-handicap group, whilst the high-handicap group consisted of eight golfers with handicaps between 11 and 20 strokes. The golfers performed 20 drives and three-dimensional kinematic data were used to quantify hip and shoulder rotation and the subsequent X-Factor. Compared with the low-handicap group, the high-handicap golfers tended to demonstrate greater hip rotation at the top of the backswing and recorded reduced maximum X-Factor values. The inconsistencies evident in the literature may suggest that a universal method of measuring rotational angles during the golf swing would be beneficial for future studies, particularly when considering potential injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate speed regulation during overground running on undulating terrain. Methods: Following an initial laboratory session to calculate physiological thresholds, eight experienced runners completed a spontaneously paced time trial over 3 laps of an outdoor course involving uphill, downhill and level sections. A portable gas analyser, GPS receiver and activity monitor were used to collect physiological, speed and stride frequency data. Results: Participants ran 23% slower on uphills and 13.8% faster on downhills compared with level sections. Speeds on level sections were significantly different for 78.4 ± 7.0 seconds following an uphill and 23.6 ± 2.2 seconds following a downhill. Speed changes were primarily regulated by stride length which was 20.5% shorter uphill and 16.2% longer downhill, while stride frequency was relatively stable. Oxygen consumption averaged 100.4% of runner’s individual ventilatory thresholds on uphills, 78.9% on downhills and 89.3% on level sections. 89% of group level speed was predicted using a modified gradient factor. Individuals adopted distinct pacing strategies, both across laps and as a function of gradient. Conclusions: Speed was best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption (VO2) limited runner’s speeds only on uphill sections, and was maintained in line with individual ventilatory thresholds. Running speed showed larger individual variation on downhill sections, while speed on the level was systematically influenced by the preceding gradient. Runners who varied their pace more as a function of gradient showed a more consistent level of oxygen consumption. These results suggest that optimising time on the level sections after hills offers the greatest potential to minimise overall time when running over undulating terrain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine whether differences existed in lower-extremity joint biomechanics during self-selected walking cadence (SW) and fast walking cadence (FW) in overweight- and normal-weight children.---------- Design: Survey.---------- Setting: Institutional gait study center.---------- Participants: Participants (N=20; mean age ± SD, 10.4±1.6y) from referred and volunteer samples were classified based on body mass index percentiles and stratified by age and sex. Exclusion criteria were a history of diabetes, neuromuscular disorder, or recent lower-extremity injury.---------- Main Outcome Measures: Sagittal, frontal, and transverse plane angular displacements (degrees) and peak moments (newton meters) at the hip, knee, and ankle joints.---------- Results: The level of significance was set at P less than .008. Compared with normal-weight children, overweight children had greater absolute peak joint moments at the hip (flexor, extensor, abductor, external rotator), the knee (flexor, extensor, abductor, adductor, internal rotator), and the ankle (plantarflexor, inverter, external/internal rotators). After including body weight as a covariate, overweight children had greater peak ankle dorsiflexor moments than normal-weight children. No kinematic differences existed between groups. Greater peak hip extensor moments and less peak ankle inverter moments occurred during FW than SW. There was greater angular displacement during hip flexion as well as less angular displacement at the hip (extension, abduction), knee (flexion, extension), and ankle (plantarflexion, inversion) during FW than SW.---------- Conclusions: Overweight children experienced increased joint moments, which can have long-term orthopedic implications and suggest a need for more nonweight-bearing activities within exercise prescription. The percent of increase in joint moments from SW to FW was not different for overweight and normal-weight children. These findings can be used in developing an exercise prescription that must involve weight-bearing activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current epidemic of paediatric obesity is consistent with a myriad of health-related comorbid conditions. Despite the higher prevalence of orthopaedic conditions in overweight children, a paucity of published research has considered the influence of these conditions on the ability to undertake physical activity. As physical activity participation is directly related to improvements in physical fitness, skeletal health and metabolic conditions, higher levels of physical activity are encouraged, and exercise is commonly prescribed in the treatment and management of childhood obesity. However, research has not correlated orthopaedic conditions, including the increased joint pain and discomfort that is commonly reported by overweight children, with decreases in physical activity. Research has confirmed that overweight children typically display a slower, more tentative walking pattern with increased forces to the hip, knee and ankle during 'normal' gait. This research, combined with anthropometric data indicating a higher prevalence of musculoskeletal malalignment in overweight children, suggests that such individuals are poorly equipped to undertake certain forms of physical activity. Concomitant increases in obesity and decreases in physical activity level strongly support the need to better understand the musculoskeletal factors associated with the performance of motor tasks by overweight and obese children.