692 resultados para 1106


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"The catalogue of Li Lung-mien's paintings and the bibliography have been omitted from this edition."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective.To estimate the excess length of stay in an intensive care unit (ICU) due to a central line–associated bloodstream infection (CLABSI), using a multistate model that accounts for the timing of infection. Design.A cohort of 3,560 patients followed up for 36,806 days in ICUs. Setting.Eleven ICUs in 3 Latin American countries: Argentina, Brazil, and Mexico. Patients.All patients admitted to the ICU during a defined time period with a central line in place for more than 24 hours. Results.The average excess length of stay due to a CLABSI increased in 10 of 11 ICUs and varied from −1.23 days to 4.69 days. A reduction in length of stay in Mexico was probably caused by an increased risk of death due to CLABSI, leading to shorter times to death. Adjusting for patient age and Average Severity of Illness Score tended to increase the estimated excess length of stays due to CLABSI. Conclusions.CLABSIs are associated with an excess length of ICU stay. The average excess length of stay varies between ICUs, most likely because of the case‐mix of admissions and differences in the ways that hospitals deal with infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sarmientite is an environmental mineral; its formation in soils enables the entrapment and immobilisation of arsenic. The mineral sarmientite is often amorphous making the application of X-ray diffraction difficult. Vibrational spectroscopy has been applied to the study of sarmientite. Bands are attributed to the vibrational units of arsenate, sulphate, hydroxyl and water. Raman bands at 794, 814 and 831 cm−1 are assigned to the ν3 (AsO4)3− antisymmetric stretching modes and the ν1 symmetric stretching mode is observed at 891 cm−1. Raman bands at 1003 and 1106 cm−1 are attributed to vibrations. The Raman band at 484 cm−1 is assigned to the triply degenerate (AsO4)3− bending vibration. The high intensity Raman band observed at 355 cm−1 (both lower and upper) is considered to be due to the (AsO4)3−ν2 bending vibration. Bands attributed to water and OH stretching vibrations are observed.