937 resultados para 1101 Medical Biochemistry and Metabolomics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 32-residue peptide, RK-1, a novel kidney-derived three disulfide-bonded member of the antimicrobial alpha-defensin family, was synthesized by the continuous now Fmoc-solid phase method. The crude, cleaved and S-reduced Linear peptide was both efficiently folded and oxidized in an acidic solution of aqueous dimethyl sulfoxide. Following purification of the resulting product, it was shown by a variety of analytical techniques, including matrix assisted laser desorption time of flight mass spectrometry, to possess a very high degree of purity. The disulfide bond pairing of the synthetic peptide was determined by H-1-NMR spectroscopy and confirmed to be a Cys(1)-Cys(6), Cys(2)-Cys(4), Cys(3)-Cys(5) arrangement similar to other mammalian alpha-defensin peptides. The synthetic RK-1 was also shown to inhibit the growth of Escherichia coli type strain NCTC 10418, Copyright (C) 2000 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first step in the common pathway for the biosynthesis of branched-chain amino acids is catalysed by acetohydroxyacid synthase (AHAS; EC 4.1.3.18). The enzyme is found in plants, fungi and bacteria, and is regulated by controls on transcription and translation, and by allosteric modulation of catalytic activity. It has long been known that the bacterial enzyme is composed of two types of subunit, and a similar arrangement has been found recently for the yeast and plant enzymes. One type of subunit contains the catalytic machinery, whereas the other has a regulatory function. Previously, we have shown [Pang and Duggleby (1999) Biochemistry 38, 5222-5231] that yeast AHAS can be reconstituted from its separately purified subunits. The, reconstituted enzyme is inhibited by valine, and ATP reverses this inhibition. In the present work, we further characterize the structure and the regulatory properties of reconstituted yeast AHAS. High phosphate concentrations are required for reconstitution and it is shown that these conditions are necessary for physical association between the catalytic and regulatory subunits. It is demonstrated by CD spectral changes that ATP binds to the regulatory subunit alone, most probably as MgATP. Neither valine nor MgATP causes dissociation of the regulatory subunit from the catalytic subunit. The specificity of valine inhibition and MgATP activation are examined and it is found that the only effective analogue of either regulator of those tested is the non-hydrolysable ATP mimic, adenosine 5 '-[beta,gamma -imido]triphosphate. The kinetics of regulation are studied in detail and it is shown that the activation by MgATP depends on the valine concentration in a complex manner that is consistent with a proposed quantitative model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delivery of endocytosed macromolecules to lysosomes occurs by means of direct fusion of late endosomes with lysosomes. This has been formally demonstrated in a cell-free content mixing assay using late endosomes and lysosomes from rat liver. There is evidence from electron microscopy Studies that the same process occurs in intact cells. The fusion process results in the formation of hybrid organelles from which lysosomes are reformed. The discovery of the hybrid organelle has opened up three areas of investigation: (i) the mechanism of direct fusion of late endosomes and lysosomes, (ii) the mechanism of re-formation of lysosomes from the hybrid organelle, and (iii) the function of the hybrid organelle. Fusion has analogies with homotypic vacuole fusion in yeast. It requires syntaxin 7 as part of the functional trans-SNARE [SNAP receptor, where SNAP is soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein] complex and the release of lumenal calcium to achieve membrane fusion. Reformation of lysosomes from the hybrid organelle occurs by a maturation process involving condensation of lumenal content and probably removal of some membrane proteins by vesicular traffic. Lysosomes may thus be regarded as a type of secretory granule, storing acid hydrolases in between fusion events with late endosomes. The hybrid organelle is predicted to function as a 'cell stomach', acting as a major site of hydrolysis of endocytosed macromolecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the effect of arsenic exposure on the haem biosynthetic pathway in the rat and humans. Significant increases in protoporphyrin IX, coproporphyrin III, coproporphyrin I were observed in the blood, liver and kidney, and in the urine of rats after a single dose of arsenic. The level of increase was dependent on the arsenic species present. Most of porphyrin concentrations in the tissues increased within 24 hr and urinary excretion elevated within 48 hr. In the human study, we collected urine samples from 113 people who live in Xing Ren of Guizhou Province, a coal-borne arsenicosis endemic area in southwest of PR China and from 30 people who live in Xing Yi (about 80 km southwest of Xing Ren) where arsenicosis is not prevalent. We analyzed the urinary porphyrins using HPLC. Results indicate that all urinary porphyrins were higher in the arsenic exposed group than those in the control group. Women, children and older age people spend much of their time indoors, they had greater increases of urinary arsenic and porphyrins. They were the higher risk groups among the study subjects. A positive correlation between the urinary arsenic levels and porphyrin concentrations demonstrated the effect of arsenic on haem biosynthesis. Significant alteration in the porphyrin excretion profiles of the younger age (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atm gene-disrupted mice recapitulate the majority of characteristics observed in patients with the genetic disorder ataxia-telangiectasia (A-T). However, although they exhibit defects in neuromotor function and a distinct neurological phenotype, they do not show the progressive neurodegeneration seen in human patients, but there is evidence that ataxia-telangiectasia mutated ( Atm)-deficient animals have elevated levels of oxidized macromolecules and some neuropathology. We report here that in vitro survival of cerebellar Purkinje cells from both Atm knock-out and Atm knock-in mice was significantly reduced compared with their wild-type littermates. Although most of the Purkinje neurons from wild-type mice exhibited extensive dendritic elongation and branching under these conditions, most neurons from Atm-deficient mice had dramatically reduced dendritic branching. An antioxidant ( isoindoline nitroxide) prevented Purkinje cell death in Atm-deficient mice and enhanced dendritogenesis to wild-type levels. Furthermore, administration of the antioxidant throughout pregnancy had a small enhancing effect on Purkinje neuron survival in Atm gene-disrupted animals and protected against oxidative stress in older animals. These data provide strong evidence for a defect in the cerebellum of Atm-deficient mice and suggest that oxidative stress contributes to this phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic alcohol misuse by human subjects leads to neuronal loss in regions such as the superior frontal cortex (SFC). Propensity to alcoholism is associated with several genes. γ-Aminobutyric acid (GABA)A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the regional presentation of GABAA and glutamate-NMDA (N-methyl-d-aspartate) receptors in SFC. Autopsy tissue was obtained from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and matched controls. ADH1C, DRD2B, EAAT2, and APOE genotypes modulated GABAA-β subunit protein expression in SFC toward a less-effective form of the receptor. Most genotypes did not divide alcoholics and controls on glutamate-NMDA receptor pharmacology, although gender and cirrhosis did. Genotype may affect amino acid transmission locally to influence neuronal vulnerability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic alcohol misuse leads to both widespread and localized damage in human cerebral cortex. The latter, as neuronal loss, is marked in superior frontal cortex (SFC) but milder in primary motor cortex (PMC) and elsewhere. Quantitative morphometry by Harper et al showed that neuronal loss is greater in alcoholics with comorbidity (Wernicke Korsakoff syndrome, liver cirrhosis). Previous work revealed a paradox: the marked differences in GABAA receptor density, pharmacology, and expression between alcoholics without cormorbidity and controls are muted or absent in cirrhotic alcoholics. This concurs with work by the Butterworth group on hepatic encephalopathy cases — most of whom had an alcoholic ætiology — who show only minor differences from controls. Glutamate receptor differences are muted in many autopsy studies, though we have evidence that NMDA site pharmacology may vary in cirrhotic alcoholics. Here we used Real-Time PCR normalized to GAPDH deltaCT to quantify NMDA NR1, NR2A and NR2B subunit expression in SFC and PMC samples obtained at autopsy from alcoholics with and without comorbid cirrhosis and matched controls. Overall subunit transcript expression was signifi cantly lower in alcoholic cirrhotics than in either of the other groups (F2,42 = 12.942, P < 0.001). The effect was most marked for the NR1 subunit; males differed from females, particularly in SFC. The data suggest that if excitotoxicity mediates neuronal loss in SFC, it may be implemented differently: passively in uncomplicated alcoholics, by altered GABAergic transmission; actively in cirrhotic alcoholics, by altered glutamatergic transmission. We also subdivided cases on a panel of genetic markers. Different genotypes interacted with NMDA and GABAA pharmacology and expression. Cirrhotic and uncomplicated alcoholics may differ pathogenically because of inherent characteristics in addition to possible neurotoxic sequelæ to the liver damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The superior frontal cortex (SFC) is selectively damaged in chronic alcohol abuse, with localized neuronal loss and tissue atrophy. Regions such as motor cortex show little neuronal loss except in severe co-morbidity (liver cirrhosis or WKS). Altered gene expression was found in microarray comparisons of alcoholic and control SFC samples [1]. We used Western blots and proteomic analysis to identify the proteins that also show differential expression. Tissue was obtained at autopsy under informed, written consent from uncomplicated alcoholics and age- and sex-matched controls. Alcoholics had consumed 80 g ethanol/day chronically (often, 200 g/day for 20 y). Controls either abstained or were social drinkers ( 20 g/day). All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were homogenized in water and clarified by brief centrifugation (1000g, 3 min) before storage at –80°C. For proteomics the thawed suspensions were centrifuged (15000g, 50 min) to prepare soluble fractions. Aliquots were pooled from SFC samples from the 5 chronic alcoholics and 5 matched controls used in the previous microarray study [1]. 2-Dimensional electrophoresis was performed in triplicate using 18 cm format pH 4–7 and pH 6–11 immobilized pH gradients for firstdimension isoelectric focusing. Following second-dimension SDS-PAGE the proteins were fluorescently stained and the images collected by densitometry. 182 proteins differed by 2-fold between cases and controls. 141 showed lower expression in alcoholics, 33 higher, and 8 were new or had disappeared. To date 63 proteins have been identified using MALDI-MS and MS-MS. Western blots were performed on uncentrifuged individual samples from 76 subjects (controls, uncomplicated alcoholics and cirrhotic alcoholics). A common standard was run on every gel. After transfer, immunolabeling, and densitometry, the intensities of the unknown bands were compared to those of the standards. We focused on proteins from transcripts that showed clear differences in a series of microarray studies, classified into common sets including Regulators of G-protein Signaling and Myelin-associated proteins. The preponderantly lower level of differentially expressed proteins in alcoholics parallels the microarray mRNA analysis in the same samples. We found that mRNA and protein expression do not frequently correspond; this may help identify pathogenic processes acting at the level of transcription, translation, or post-translationally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA-A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate N-methyl-D-aspartate (NMDA) and GABA-A receptors to influence the severity of alcohol-induced brain damage. Cerebral cortex tissue was obtained at autopsy from alcoholics without disease comorbid with alcoholics, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABRB2, SLC1A2, and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters. In contrast, a specific alcohol dehydrogenase (ADHIC) genotype interacted significantly with NMDA efficacy and affinity in a region-specific manner SLC1A2 (glutamate transporter-2) genotype interacted significantly with local GABAA receptor b subunit mRNA expression, and ADHIC, DRD2B, SLC1A2, and APOE genotypes with b subunit isoform protein expression. In the latter instance, possession of the alcoholism- associated allele altered b isoform protein expression patterns toward a less-efficacious form of the GABA-A receptor in the pathologically vulnerable region. GABRB2 and GRIN2B (NMDA receptor 2B subunit} Genotypes were associated with significant regional difference in the pattern of b subunit protein isoform expression, but this was not influenced by alcoholism status. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcoholism results in changes in the human brain which reinforce the cycle of craving and dependency, and these changes are manifest in the pattern of expression of mRNA and proteins in key cells and brain areas. Long-term alcohol abuse also results in damage to selected regions of the cortex. We have used cDNA microarrays to show that less than 1% of mRNA transcripts differ signifi cantly between cases and controls in the susceptible area and that the expression profi le of a subset of these transcripts is suffi cient to distinguish alcohol abusers from controls. In addition, we have utilized a 2D gel proteomics based approach to determine the identity of proteins in the superior frontal cortex (SFC) of the human brain that show differential expression in controls and long term alcohol abusers. Overall, 182 proteins differed by the criterion of > 2-fold between case and control samples. Of these, 139 showed signifi cantly lower expression in alcoholics, 35 showed signifi cantly higher expression, and 8 were new or had disappeared. To date 63 proteins have been identifi ed. The expression of one family of proteins, the synucleins, has been further characterized using Real Time PCR and Western Blotting. The expression of alpha-synuclein mRNA was signifi cantly lower in the SFC of alcoholics compared with the same area in controls (P = 0.01) whereas no such difference in expression was found in the motor cortex. The expression of beta- and gamma- synuclein were not signifi cantly different between alcoholics and controls. In contrast, the pattern of alphasynuclein protein expression differs from that of the corresponding RNA transcript. Because of the key role of synaptic proteins in the pathogenesis of alcoholism, we are developing 2-D DIGE based techniques to quantify expression changes in synaptosomes prepared from the SFC of controls and alcoholics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serotonin can modulate the activity of neural reward pathways that are strongly implicated in mediating the effects of chronic alcohol misuse, and its treatment, in human subjects. In previous work and as discussed elsewhere at this meeting, we and others have found consistent differences in the parameters of GABA and glutamate receptors, and the expression of their component subunit transcripts and proteins, in areas of the alcoholic brain that are altered by alcoholism. We did not fi nd clear changes in GABA and glutamate transport function in such samples, but a series of microarray analyses showed consistent upregulation of the presynaptic GABA/betaine transporter SLC6A12. Microarray studies showed no signifi cant differences in the expression of transcripts associated with 5HT transmission; however, only a small number of such elements were present on the arrays. Here we partitioned GABAA and NMDA pharmacology, and subunit mRNA and protein expression, measured in samples of frontal and motor cortex obtained at autopsy from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and controls, according to 5HTTLPR (SLC6A4) and 5HT1B (HTR1B) polymorphisms. We found no effect of these genotypes on the expression of GABAA receptor gene products, but there was a signifi cant mRNA Transcript X Area X Group X 5HTTLPR Interaction with NMDA subunit isoform expression measured by Real Time PCR with GAPDH normalization. Further analysis showed the effect to be selective for alcoholics with cirrhosis, to be most marked in the pathologically vulnerable frontal cortex, and to vary with subunit transcript (F2,76 = 6.545, P = 0.002). NR1 expression was most affected, followed by NR2A, with NR2B expression least altered. Pilot data suggest 5HT1B genotype may also modulate NMDA subunit expression. Interactions between amino acid and serotonin transmission may infl uence susceptibility to alcohol dependence or pathogenesis