983 resultados para 1100-0 Aluminum


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified split Hopkinson torsional bar (SHTB) is introduced to eliminate the effect of the loading reverberation of the standard SHTB on the study of evolution of shear localization. The effect, the cause and the method by which to eliminate loading wave reverberation are carefully analysed and discussed. By means of the modified apparatus, the post-mortem observation of tested specimens can provide data on actual evolution of micro-structure and micro-damage during shear localization. Some test results of shear banding conducted with this apparatus support the use of the modified design. Moreover, the modification makes possible the correlation of evolving micro-structures to the transient shear stress-strain recording.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The loading reverberation is a multiple wave effect on the specimen in the split Hopkinson torsional bar (SHTB). Its existence intensively destroys the microstructure pattern in the tested material and therefore, interferes with the study correlating the deformed microstructure to the macroscopic stress-strain response. This paper discusses the problem of the loading reverberation and its effects on the post-mortem observations in the SHTB experiment. The cause of the loading reverberation is illustrated by a stress wave analysis. The modification of the standard SHTB is introduced, which involves attaching two unloading bars at the two ends of the original main bar system and adopting a new loading head and a couple of specially designed clutches. The clutches are placed between the main bar system and the unloading bars in order to lead the secondary loading wave out of the main bar system and to cut off the connection in a timely manner. The loading head of the standard torsional bar was redesigned by using a tube-type loading device associated with a ratchet system to ensure the exclusion of the reflected wave. Thus, the secondary loading waves were wholly trapped in the two unloading bars. The wave recording results and the contrasting experiments for examining the post-mortem microstructure during shear banding both before and after the modification highly support the effectiveness of the modified version. The modified SHTB realizes a single wave pulse loading process and will become a useful tool for investigating the relation between the deformed microstructure and the macroscopic stress-strain response. It will play an important role especially in the study of the evolution of the microstructure during the shear banding process. (C) 1995 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The material response and failure mechanism of unidirectional metal matrix composite under impulsive shear loading are investigated in this paper. Both experimental and analytical studies were performed. The shear strength of unidirectional C-f/A356.0 composite and A356.0 aluminum alloy at high strain rate were measured with a modified split Hopkinson torsional bar technique. The results indicated that the carbon fibers did not improve the shear strength of aluminum matrix if the fiber orientation aligned with the shear loading axis. The microscopic inspection of the fractured surface showed a multi-scale zigzag feature which implied a complicated shear failure mechanism in the composite. In addition to testing, the micromechanical stress field in the composite was analyzed by the generalized Eshelby equivalent method (GEEM). The influence of cracking in matrix on the micromechanical stress field was investigated as well. The results showed that the stress distribution in the composite is quite nonhomogeneous and very high shear stress concentrations are found in some regions in the matrix. The high shear stress concentration in the matrix induces tensile cracking at 45 degrees to the shear direction. This in turn aggravates the stress concentration at the fiber/matrix interface and finally leads to a catastrophic failure in the composite. From the correlation between the analysis and experimental results, the shear failure mechanism of unidirectional C-f/A356.0 composite can be elucidated qualitatively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Nowadays, there has been increased incidence of skin cancer, which is mainly related to increased sun exposure. Although sunscreen products may prevent the appearing of this disease, consumers may not use them due to some factors, including the sensory properties. The Aluminum Starch Octenylsuccinate (Dry-Flo® Pure, Akzo Nobel), an aluminum salt produced by the reaction of anhydride octenylsuccinic with starch, is able to improve the spreadability on the skin and reduce the oiliness of the formulation. Objective: To verify volunteers' acceptance for sunscreen formulation with natural polymer, compared with a control formulation (without polymer). Methods: To carry out the sensory analysis a formulation with or without 2. 0% Aluminum Starch Octenylsuccinate was prepared. Formulations had FPS 15, with critical wavelength of 353 nm, determined by testing in silico using the BASF® Sunscreen Simulator. Sensory analysis was performed on 60 students of both sexes, aged between 18 and 25 years, regular users of sunscreen products. Results: The results suggested that the polymer was able to promote a very soft and velvety feel on the skin when used in a sunscreen formulation, and it was able to mitigate and noticeably reduce the oiliness of the skin. Of the 60 volunteers who participated in the study, 45 volunteers (75%) considered that the polymer formulation provides little brightness or did not notice the difference in brightness of the skin after application. Conclusions: It was able to improve the sensory of the product, contributing to greater volunteers' acceptance.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Few data is available about the hydration status of active adolescents in free living conditions. Cell dehydration may be prevalent in healthy, free-living children at school and they could be in a state of chronic voluntary dehydration. Objective: This study aims to describe hydration status assessed by Free Water Reserve (FWR) in adolescents. Method: Two hundred participants (118 girls), aged 13-18 years completed the study. Urinary volume (ml/d) and urinary osmolality (mosm/kg) were measured by one 24h urinary collection, and coefficient of creatinine was used to validate completeness of urine collections. FWR (measured urine volume minus the obligatory urine volume) was used for characterization of hydration status. Positive values of FWR indicate euhydration, negative values the risk of hypo-hydration. Results: Median urinary volume excretion was 1100.0 ml/d for boys and 1025.0 ml/d for girls (p=0.923). Mean urinary osmolality was 715.7±172.3 mosm/kg for boys and 597.42±193.1 mosm/kg for girls (p=0.247). Median FWR (ml/24h) was positive in both sex groups (173.2 ml/d in boys and 373.2 ml/d in girls); however, 40.2% of boys and 31.4% of girls (p=0.195) were at risk of hypo-hydration status. Conclusions: In this sample of adolescents approximately one third was classified as at risk of hypo-hydration status. Preventive measures to increase the level of total water intake should be considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical behavior in 0.5 M H2SO4 at 25 degreesC of a Cu-Al(9.3 wt%)-Ag(4.7 wt%) alloy submitted to different heat treatments and an annealed Cu- Al(9.7 wt%)-Ag(34.2 wt%) were studied by means of open circuit potential (E-mix) measurements, potentiodynamic polarizations and cyclic voltammetry. SEM and EDX microanalysis were used to examine the changes caused by the electrochemical perturbations. The steady state potentials observed for the studied samples were correlated in terms of the phases present in the alloys surface. The resulting E/I potentiodynamic profiles were explained in terms of the potentiodynamic behavior of pure copper and pure silver. The presence of aluminum decreased the extent of copper oxidation. In the apparent Tafel potential region, two anodic Tafel slopes were obtained: 40 mV dec(-1) in the low potential region and 130 mV dec(-1) in the high potential region, which were related with the electrochemical processes involving copper oxidation. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper doped zinc aluminium ferrites are synthesized by the solid-state reaction route is cubic crystalline with unit cell parameter varying from 8.39 to 8.89 Å. TEM pictures clearly indicating that fundamental unit is composed of octahedral and tetrahedral blocks and joined strongly shown in (a). EPR spectra is compositional dependent at lower Al/Cu concentration EPR spectra is due to Fe3+ and at a higher content of Al/Cu the EPR spectra is due to Cu2+. Absence of EPR spectra at room temperature indicates that the sample is perfectly ferromagnetic. EPR results at low temperature indicate that the sample is paramagnetic, and that copper is placed in the tetragonal elongation (B) site with magnetically non-equivalent ions in the unit cell having strong exchange coupling between them. This is shown in (b). (a) TEM image of ferrite with x = 0.15. (b) EPR spectrum of ferrite with x = 0.75.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.