986 resultados para 10Me-C16:0
Resumo:
Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103 per mill. Specific fatty acids released from bacterial membranes include C 16:1 omega 5c , C 17:1 omega 6c , and cyC 17:0 omega 5,6 , all of which have been fully characterized by mass spectrometry. These unusual fatty acids continuously display the lowest d13 C values in all sediment horizons and two of them are detected in high abundance (i.e., C 16:1 omega 5c and cyC 17:0 omega 5,6 ). Combined with microscopic examination by fluorescence in situ hybridization specifically targeting sulfate-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content and aggregate number in combination with pore water sulfate data provide further evidence of this finding. Using mass balance calculations we present a cell-specific fatty acid pattern most likely displaying a very close resemblance to the still uncultured Desulfosarcina/Desulfococcus species involved in AOM.
Resumo:
Sediments of upwelling regions off Namibia, Peru, and Chile contain dense populations of large nitrate-storing sulfide-oxidizing bacteria, Thiomargarita, Beggiatoa, and Thioploca. Increased contents of monounsaturated C16 and C18 fatty acids have been found at all stations studied, especially when a high density of sulfide oxidizers in the sediments was observed. The distribution of lipid biomarkers attributed to sulfate reducers (10MeC16:0 fatty acid, ai-C15:0 fatty acid, and mono-O-alkyl glycerol ethers) compared to the distribution of sulfide oxidizers indicate a close association between these bacteria. As a consequence, the distributions of sulfate reducers in sediments of Namibia, Peru, and Chile are closely related to differences in the motility of the various sulfide oxidizers at the three study sites. Depth profiles of mono-O-alkyl glycerol ethers have been found to correlate best with the occurrence of large sulfide-oxidizing bacteria. This suggests a particularly close link between mono-O-alkyl glycerol ether-synthesizing sulfate reducers and sulfide oxidizers. The interaction between sulfide-oxidizing bacteria and sulfate-reducing bacteria reveals intense sulfur cycling and degradation of organic matter in different sediment depths.
Resumo:
Gullfaks is one of the four major Norwegian oil and gas fields, located in the northeastern edge of the North Sea Plateau. Tommeliten lies in the greater Ekofisk area in the central North Sea. During the cruises HE 208 and AL 267 several seep locations of the North Sea were visited. At the Heincke seep at Gullfaks, sediments were sampled in May 2004 (HE 208) using a video-guided multiple corer system (MUC; Octopus, Kiel). The samples were recovered from an area densely covered with bacterial mats where gas ebullition was observed. The coarse sands limited MUC penetration depth to maximal 30 centimeters and the highly permeable sands did not allow for a high-resolution, vertical subsampling because of pore water loss. The gas flare mapping and videographic observation at Tommeliten indicated an area of gas emission with a few small patches of bacterial mats with diameters <50 cm from most of which a single stream of gas bubbles emerged. The patches were spaced apart by 10-100 m. Sampling of sediments covered by bacterial mats was only possible with 3 small push cores (3.8 cm diameter) mounted to ROV Cherokee. These cores were sampled in 3 cm intervals. Lipid biomarker extraction from 10 -17 g wet sediment was carried out as described in detail elsewhere (Elvert et al., 2003; doi:10.1080/01490450303894). Briefly, defined concentrations of cholestane, nonadecanol and nonadecanolic acid with known delta 13C-values were added to the sediments prior to extraction as internal standards for the hydrocarbon, alcohol and fatty acid fraction, respectively. Total lipid extracts were obtained from the sediment by ultrasonification with organic solvents of decreasing polarity. Esterified fatty acids (FAs) were cleaved from the glycerol head group by saponification with methanolic KOH solution. From this mixture, the neutral fraction was extracted with hexane. After subsequent acidification, FAs were extracted with hexane. For analysis, FAs were methylated using BF3 in methanol yielding fatty acid methyl esters (FAMES). The fixation for total cell counts and CARD-FISH were performed on-board directly after sampling. For both methods, sediments were fixed in formaldehyde solution. After two hours, aliquots for CARD-FISH staining were washed with 1* PBS (10mmol/l sodium phosphate solution, 130mmol/l NaCl, adjusted to a pH of 7.2) and finally stored in a 1:1 PBS:ethanol solution at -20°C until further processing. Samples for total cell counts were stored in formalin at 4°C until analysis. For sandy samples, the total cell count/CARD-FISH protocol was optimized to separate sand particles from the cells. Cells were dislodged from sediment grains and brought into solution with the supernatant by sonicating each sample onice for 2 minutes at 50W. This procedure was repeated four times and supernatants were combined. The sediment samples were brought to a final dilution of 1:2000 to 1:4000 and filtered onto 0.2µm GTTP filters (Millipore, Eschbonn, Germany).
Resumo:
The occurrence of microbialites in post-glacial coral reefs has been interpreted to reflect an ecosystem response to environmental change. The greater thickness of microbialites in reefs with a volcanic hinterland compared to thinner microbial crusts in reefs with a non-volcanic hinterland led to the suggestion that fertilization of the reefal environment by chemical weathering of volcanic rocks stimulated primary productivity and microbialite formation. Using a molecular and isotopic approach on reef-microbialites from Tahiti (Pacific Ocean), it was recently shown that sulfate-reducing bacteria favored the formation of microbial carbonates. To test if similar mechanisms induced microbialite formation in other reefs as well, the Tahitian microbialites are compared with similar microbialites from coral reefs off Vanuatu (Pacific Ocean), Belize (Caribbean Sea, Atlantic Ocean), and the Maldives (Indian Ocean) in this study. The selected study sites cover a wide range of geological settings, reflecting variable input and composition of detritus. The new lipid biomarker data and stable sulfur isotope results confirm that sulfate-reducing bacteria played an intrinsic role in the precipitation of microbial carbonate at all study sites, irrespective of the geological setting. Abundant biomarkers indicative of sulfate reducers include a variety of terminally-branched and mid chain-branched fatty acids as well as mono-O-alkyl glycerol ethers. Isotope evidence for bacterial sulfate reduction is represented by low d34S values of pyrite (-43 to -42 per mill) enclosed in the microbialites and, compared to seawater sulfate, slightly elevated d34S and d18O values of carbonate-associated sulfate (21.9 to 22.2 per mill and 11.3 to 12.4 per mill, respectively). Microbialite formation took place in anoxic micro-environments, which presumably developed through the fertilization of the reef environment and the resultant accumulation of organic matter including bacterial extracellular polymeric substances (EPS), coral mucus, and marine snow in cavities within the coral framework. ToF-SIMS analysis reveals that the dark layers of laminated microbialites are enriched in carbohydrates, which are common constituents of EPS and coral mucus. These results support the hypothesis that bacterial degradation of EPS and coral mucus within microbial mats favored carbonate precipitation. Because reefal microbialites formed by similar processes in very different geological settings, this comparative study suggests that a volcanic hinterland is not required for microbialite growth. Yet, detrital input derived from the weathering of volcanic rocks appears to be a natural fertilizer, being conductive for the growth of microbial mats, which fosters the development of particularly abundant and thick microbial crusts.
Resumo:
The aim of this study was to use lipidomics to determine if the lipid composition of apolipoprotein-B-containing lipoproteins is modified by dyslipidaemia in type 2 diabetes and if any of the identified changes potentially have biological relevance in the pathophysiology of type 2 diabetes. VLDL and LDL from normolipidaemic and dyslipidaemic type 2 diabetic women and controls were isolated and quantified with HPLC and mass spectrometry. A detailed molecular characterisation of VLDL triacylglycerols (TAG) was also performed using the novel ozone-induced dissociation method, which allowed us to distinguish vaccenic acid (C18:1 n-7) from oleic acid (C18:1 n-9) in specific TAG species. Lipid class composition was very similar in VLDL and LDL from normolipidaemic type 2 diabetic and control participants. By contrast, dyslipidaemia was associated with significant changes in both lipid classes (e.g. increased diacylglycerols) and lipid species (e.g. increased C16:1 and C20:3 in phosphatidylcholine and cholesteryl ester and increased C16:0 [palmitic acid] and vaccenic acid in TAG). Levels of palmitic acid in VLDL and LDL TAG correlated with insulin resistance, and VLDL TAG enriched in palmitic acid promoted increased secretion of proinflammatory mediators from human smooth muscle cells. We showed that dyslipidaemia is associated with major changes in both lipid class and lipid species composition in VLDL and LDL from women with type 2 diabetes. In addition, we identified specific molecular lipid species that both correlate with clinical variables and are proinflammatory. Our study thus shows the potential of advanced lipidomic methods to further understand the pathophysiology of type 2 diabetes.
Resumo:
Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.
Resumo:
Algae grown in outdoor reactors (volume: 10 L and depth: 20 cm) were fed directly with filtered and sterilised municipal wastewater. The nutrient removal efficiencies were 86%, 90%, 89%, 70% and 76% for TOC, TN, NH4-N, TP and OP, respectively, and lipid content varied from 18% to 28.5% of dry algal biomass. Biomass productivity of similar to 122 mg/l/d (surface productivity 24.4 g/m(2)/d) and lipid productivity of similar to 32 mg/l/d were recorded. Gas chromatography and mass spectrometry (GC-MS) analyses of the fatty acid methyl esters (FAME) showed a higher content of desirable fatty acids (bearing biofuel properties) with major contributions from saturates such as palmitic acid C16:0; similar to 40%] and stearic acid C18:0; similar to 34%], followed by unsaturates such as oleic acid C18:1(9); similar to 10%] and linoleic acid C18:2(9,12); similar to 5%]. The decomposition of algal biomass and reactor residues with an exothermic heat content of 123.4 J/g provides the scope for further energy derivation. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Gas-liquid chromatography has been employed for the qualitative and quantitative analysis of the component fatty acids in lipids of oil sardine (Sardinella longiceps). Phospholipids and triglycerides of the lipids were previously separated by column chromatography before they were converted into the methyl esters of the fatty acids. The predominant acids present in the depot fat of the fish have been found to be C14:0=8.13%, C16:0=27.9%, C18:0=3.8%, C18:1=15.4%., C20:5=10.6% and C22:6=8.8%. Apart from the above acids the distribution of minor acids belonging to Cl8, C20 and C22 groups have also been worked out. The separated phospholipid fraction contained more than 70% polyunsaturated acids of which the important constituents were docosahexaenoic (C22:6=28%) and eicosapentaenoic (C20:5=10.6%). A marked reduction was found in the amounts of polyunsaturated acids in triglycerides, their total amount registering about 20%. This fraction recorded about 48% of C16 acids of which palmitic and palmitoleic acids amounted to 25.8% and 19.1% respectively. Occurrence of odd numbered fatty acids C15 and C17 has also been noted in the phospholipid and composite samples of the fish.
Resumo:
本文通过对蓝细菌Synechocystis sp. PCC 6803在添加葡萄糖、Na2S203的BG-11培养基中的生长特性、脂类及脂肪酸组成、细胞低温荧光、色素组成进行分析测定,总结出如下规律: 当蓝细菌Synechocystis sp. PCC 6803在添加有葡萄糖的BG-11培养基中培养时细胞出现了一种新的糖脂(记为糖脂-x),在添加果糖、麦芽糖、乳糖等其它碳源的培养基中生长的细胞中也检测到糖脂-x糖脂-x的出现经推测是与活性氧相作用的产物,当在含糖的培养基中加入活性氧猝灭剂Na2S203时能有效地抑制糖脂-x的出现。糖脂一x的出现伴随着其它脂、尤其是双半乳糖甘油二酯(DGDG)的含量下降,这可能与细胞营养代谢类型的转变相适应。糖脂-x的出现使细胞适应异养生长条件,这时藻胆体(PBS),光系统II(PSII),光系统I(PSD降解,叶绿素消失。 糖脂-x经1H-NMR波谱术检测证实为甘油糖脂,经气质联谱分析其脂肪酸组成中含大量的枝链脂肪酸,12-甲基十四碳酸、12-甲基十五碳酸、12-甲基十六碳酸以及两种稀有的含氮脂肪酸。这些脂肪酸在添加高浓度葡萄糖的培养基中生长的.Synechocystis sp. PCC 6803中的单半乳糖甘油二酯(MGDG)也能检测到。ESI-MS以及P-SI-MS测定结果表明糖脂.x含一分子的脂酰基侧链以及两分子的己糖,半乳糖与葡萄糖。 对.Synechocystis sp. PCC 6803生长在不同浓度的葡萄糖与Na2S203培养基中脂类组成与脂肪酸组成进行比较,发现Na2S203能有效地增加膜脂中硫代异鼠李糖二酰基甘油(SQDG)和磷脂酰甘油(PG)的百分含量,培养基中同时添加葡萄糖时能抵消Na2S203的这一效应。此外,Na2S203能显著增加单半乳糖甘油二酯(MGDG)、双半乳糖甘油二酯(DGDG)中十六碳酸(C16:0)的百分含量,这一效应也能为葡萄糖恢复。Na2S203不能显著地改变SQDG中C16:0的百分含量,加入葡萄糖时能降低C16:0的百分含量。这些结果说明Na2S203可能充当一种还原剂使膜脂处于一种低的不饱和状态,同时加入葡萄糖时能降低Na2S203的还原力。此外,Na2S203还可作为SQDG合成中的硫供体。 用HPLC测定.Synechocystis sp. PCC 6803在添加不同浓度的Na2S203,葡萄糖的BG-11培养基中生长时的叶绿素与类胡萝卜素浓度,结果表明葡萄糖表现出对叶绿素与类胡萝卜素水平的抑制效应,Na2S203在低浓度时表现出对叶绿素与类胡萝卜素水平的促进效应,但在高浓度时表现出抑制效应。因此适当浓度的Na2S203的加入有利于维持蓝细菌在培养基中添加葡萄糖的生长条件下的低水平自由基,能使葡萄糖表现出促进细胞生长的特性。 通过测定Synechocystis sp. PCC 6803生长曲线中葡萄糖、Na2S203的浓度效应,结果表明葡萄糖在低浓度(例如5 mmoI.L-l)时表现出促进细胞的生长,在相对高的浓度表现出抑制细胞生长的效应。在培养基中同时加入Na2S203时可恢复葡萄糖对细胞的生长的促进效应。单独加入Na2S203表现出对细胞生长的抑制效应。这说明葡萄糖、Na2S203对细胞的生长存在着正的协同效应。
Resumo:
海洋微藻是海洋生态系统中最主要的初级生产者,也是海洋生物资源的重要来源。许多海洋微藻富含对人体具有重要的生理作用与保健功能的长链多不饱和脂肪酸,因此,筛选富含EPA、DHA等长链多不饱和脂肪酸的微藻和利用人工培养方法提高这些脂肪酸的产量是当前海洋生物学研究领域的热点之一。在本研究中,我们对被中科院海洋所定名为“Chlorella sp”(编号为1061)的一种海洋微藻的化学分类、甘油脂及其脂肪酸组成和外源葡萄糖和抗氧化剂(硫代硫酸钠)对这种微藻的脂肪酸含量的影响进行了研究,取得了以下主要结果。 海洋微藻是我固海水养殖中广泛使用的优良饵料藻。脂类物质是微藻最重要的营养指标之一,在本研究中,我们首先分析了被中科院海洋所定名为“Chlorellasp”的海洋微藻中的甘油脂及其脂肪酸种类和组成特点。结果表明,Chlorella sp.中的非极性脂主要为三脂酰甘油,极性甘油脂有10种。其中,一般培养条件下(温度23℃:光照,周期L/D14:10,强度60umolm-2-S-l)三脂酰甘油约占总脂的31 mol%,极性甘油脂约占总脂的69 rriol%。10种极性甘油脂是单半乳糖甘油二脂( monogalactosyldiacylglycerol. MGDG)、 双半乳糖甘油二脂( diagalactosyldiacylglycerol , DGDG)、 硫代异鼠李糖甘油二脂( sulfoquinovosyldiacylglycerol,SQDG)、磷脂酰甘油(phosphatatidylglycerol,PG)、磷脂酰乙醇胺(phosphatidylethanolamine,PE)、磷脂酰胆碱( phosphatidylcholine,PC)、磷脂酰肌醇(phosphatidylinositol,PI)、磷脂酰丝氨醴(phosphatidylserine,Ps)、l,2-二酰基甘油-0-4,.(ⅣMⅣ-三甲基)高丝氨酸(diacylglyceryltrimethylhomoserine,DGTS)以及一种未能完全肯定,但可能是一中氯硫脂( chlorosulfolipid,CSL)。其中MGDG、DGDG、SQDG和PG是构成光合膜的主要成分,也是Chlorella sp中的主要极性脂。甜菜碱脂DGTS和磷脂PC是构成非光合膜的主要组分。Chlorella sp.中的主要脂肪酸为C16:0、C16:1耜C20:5(EPA),后者主要存在于MGDG、DGDG和DGTS中,而三脂酰甘油也含有接近7%的EPA。 海洋微藻Chlorella sp.1061虽然被归属到绿藻纲绿藻目小球藻属,但是我们的研究表明,其色素、极性脂皮其脂肪酸组成与其它小球藻属藻类存在这很大差异Chl b是绿藻纲藻类中最主要的光合色素之一,1 6:4(n-3)和l 8:3(n-3)是绿藻微藻的主要脂肪酸,然而所有这些绿藻的特征化合物均未在Chlorella sp. 1061中检测到。DGTS和20:5(n-3)存在于很多的海洋微藻中,我们从Chlorella sp. 1061 中分离到占总极性甘油脂8 mo1%的DGTS,并从MGDG、DGDG和DGTS等极性甘油脂中检测到大量的20:5(n-3)。但是一般认为,小球藻属藻类中不舍这两种化合物。根据Chlorella sp. 1061的以上特点,这种藻不应该被归到小球藻属中。另外,由于Chlorella sp. 1061在色素、膜脂和脂肪酸组成特征方面大眼藻纲( Eustigmatophyceae)中的微绿球藻(Nannochloropsis)非常相似,因此,我们认为ChloreHa sp. 1061可能是Nannochloropsis中的一个种。但是未得到更进一步的证明和权威的认可之前,本文中我们仍然沿用ChloreHa sp,这一名称。 许多藻类中DGTS和PC -般不会同时存在,或者说一个存在时另外的一个的含量非常低。由此有人认为DGTS和PC之间存在着相互替代的关系。然而本研究中发现正常培养条件下Chlorella sp.中的DGTS和PC含量均较高(约10%)。磷处理实验结果表明,磷缺乏时Chlore Ha sp,中DGTS舍量大幅升高,而同时PC含量相应下降许多:但高浓度的磷并不能提高PC含量和降低DGTS含量,说明Chlorella sp,中DGTS仍可起替代PC的作用,然而PC可能并不能替代DGTS。Chlorella sp.中MGDG和DGTS脂肪酸组成及其位置分布结果显示,它们的组成和分布相似;在老化培养过程中MGDG和DGTS表现出周期性的相反的含量升高、降低的趋势,这进一步说明MGDG和DGTS之间存在着特殊的关系,MGDG可能合成自DGTS。 海洋微藻富含有利于人体健康的长链不饱和脂肪酸,如何提高微藻脂肪酸特别是多不饱和脂肪酸产量是目前研究的热点之一。本文首次报道了同时加入葡萄糖和硫代硫酸钠对Chlorelta sp,的生长、脂类组成和脂肪酸总产量的影响,结果显示葡萄糖和硫代硫酸钠存在明显而且强烈的互作,二者在培养液中的同时存在显著刺激了脂肪酸总产量的积累,在培养液中分别加入2.5 mM的葡萄糖和5mM的硫代硫酸钠,脂肪酸的产量可以比对照提高78%。而低浓度的葡萄糖和硫代硫酸钠对Chlorella sp.脂肪酸组成影响变化不明显,甚至在硫代硫酸钠存在下令人感兴趣的EPA含量还略有升高。显然,在Chlorella sp.培养中同时加入低浓度的葡萄糖和硫代硫酸钠是极具潜力的提高脂产量的方法,也可作为提高培养微藻其它活性物质产量借鉴的方法。在不久的将来,这种培养方法很可能发展成为生产实践中提高Chlore sp.乃至其它微藻脂肪酸、EPA和其它活性物质产量的经济有效的新途径。
Resumo:
磷脂是动物和植物非光合组织细胞膜系统的主要组成成分,在细胞生命过程中扮演着重要角色。尽管绿色植物光合膜的的甘油脂主要是糖脂,但是它仍然含有大约10%的磷脂,说明磷脂在光合膜的结构和功能中起重要作用。构成生物膜的磷脂有多种,但是,光合膜只含有磷脂酰甘油(PG)一种磷脂。光合膜中的PG有其特殊性,即:在PG的sn-2位上总连着一个棕榈酸(16:0)或者反式十六碳烯酸(16:1trans),说明了这种具有特殊结构的甘油脂在维持类囊体膜的结构和功能方面具有重要的作用。 叶绿体中有两个重要酶参与了PG的生物合成,它们分别是胞嘧啶二脂酰甘油合成酶(CDS)和磷脂酰甘油合成酶(PGS)。本实验以烟草和马铃薯为材料,利用RNAi技术,对CDS和PGS基因的表达进行抑制,通过PG缺失突变体,研究其功能。 对转含有PGS片段的沉默结构的转基因烟草叶片膜脂进行了分析,结果表明,与野生型烟草相比较,其PG含量下降了约20%,同时,SQDG和PC的含量增加。PG含量的降低没有引起MGDG和DGDG含量的变化。另外,我们还对转基因植株目的基因片段的RNA表达水平进行了RT-PCR分析,发现其表达量大幅度降低。这些结果表明,在转基因株系中,PGS基因的表达受到了抑制,说明我们获得了PG部分缺失的烟草PGS突变体。 对烟草PG缺失体的PG脂肪酸组成进行分析,表明其特征性脂肪酸反式十六碳烯酸含量明显下降,比野生型降低了44%,C18:0、C18:1和C18:2的相对含量增加,整个变化与总脂脂肪酸变化基本一致。 为了研究PG缺失对光合作用的影响,我们分析了多种光合指标。对叶绿素含量的分析表明,PG含量的降低影响了光合色素的组成。PG部分缺失的转基因烟草中的叶绿素总的含量下降,其中叶绿素b含量下降更为明显,结果,叶绿素a与叶绿素b的比值较野生型高。转基因植株净光合速率下降,二氧化碳利用率降低;PSII的最大光化学效率(Fv/Fm)和实际光化学效率(фPSII)降低,光化学猝灭下降,非光化学猝灭增加,尤其老叶的变化更为明显。这些结果说明了PG的部分缺失影响了植株的光合能力,捕光色素蛋白复合体的结构受到了影响,PSII功能遭受损伤。 同时,我们根据已经报道的马铃薯CDS基因,克隆了一个片段,构建沉默结构,并对沉默结构进行了转化。通过抗性基因的筛选以及RT-PCR检测,证明了沉默结构转化成功,目的基因的表达受到抑制,获得了马铃薯CDS转基因植株。 对马铃薯野生型和CDS转基因植株进行膜脂和脂肪酸分析表明,转基因植株叶片的PE、PG和PC等磷脂含量降低,SQDG和DGDG含量增加;C16:1(3t)、C16:2、C16:3、C18:1和C18:2含量下降,C16:0和C18:3含量增加,而C16:1和C18:0变化不明显。马铃薯CDS转基因植株的叶绿素荧光分析表明,PSII最大光化学效率降低,从野生型的0.82下降到0.77。
Resumo:
The taxonomic position of a novel Gram-negative strain, designated Sy1(T), isolated from a farm-soil sample obtained from Jiangsu Province, PR China, was characterized by using a polyphasic approach. The cells were non-motile, non-spore-forming rods. The organism grew optimally at 30-37 degrees C and at pH 6.0-8.0. Based on 16S rRNA gene sequence analysis, strain Sy1(T) is a member of the genus Sphingobacterium; Sphingobacterium multivorum JCM 21156(T) was the nearest relative (98.5% sequence similarity). The predominant fatty acids of strain Sy1T were isoC15:0 (32.90/o), C16:0 (10.9%) and summed feature 3 (iso-C-15:0 2-OH and/or C-16:1 omega 7c; 24.1%). The DNA G + C content was 38.5 mol%. The low level of DNA-DNA relatedness (2.2 %) to S. multivorum JCM 21156 T in combination with differential morphological and biochemical properties demonstrated that strain SY1(T) (=KCTC 22131(T)= CGMCC 1.6855(T)) should be classified as representing a novel species of the genus Sphingobacterium for which the name Sphingobacterium siyangense sp. nov. is proposed.
Resumo:
Ten species of filamentous and multicellular thalloid algae (Phaeophyta) belonging to six genera of the class Dictyophyceae were collected from different seawater habitats of Karachi, Pakistan at the northern boundary of the Arabian Sea during September 1997 and July 1998. They were extracted in chloroform: methanol, saponified, subjected to column chromatography (CC, TLC), esterified and analysed for fatty acid (FA) composition initially by gas-liquid-chromatography (GLC) and finally by gas chromatography-mass spectrometry (GC-MS). Algae of the classes Laminariophyceae and Fucophyceae (Phaeophyta) displayed only a few SCFAs, PUFAs and substituted FAs, no VLCFA, C22 UFA, CFA, DCFA and monoynoic FA, large amount of C16:0, very large quantity of C18:1, very small RCCL and FA-diversity, C18 UFAs up to four DBs, C20 UFAs up to three DBs only. They were characterized by the largest amount of C18:1, lowest degree of unsaturation of C20 UFAs, lack of C22 UFAs, the shortest RCCL and the smallest FA-diversity as compared to other phyla.
Resumo:
The purpose of this study, Evaluation the effect of Rosmarinus officinalis and Thymus vulgaris extracts on the stability of poly unsaturated fatty acids in frozen Silver carp minced. Treatments include: Treatment 1 - Control: frozen meat packaged in conventional Treatment 2: Frozen Silver carp minced+Thyme 300 mg/kg in normal packaging Treatment 3: Frozen Silver carp minced+Rosemary 200 mg/kg in normal packaging Treatment 4: Frozen Silver carp minced+Rosemary compound (100 mg/kg) and Thyme (100 mg/kg) in normal packaging After rapid freezing of samples in the spiral freezer by individual quick freezing method, to maintain the cold temperature (-18) °C were transferred. Sampling and measurements to determine the fatty acid profile of the zero phase beginning in the first month and then every ten days, and 15 days in the second month of the third month after the monthly test. Identifying, defining and measuring the fatty acid profile by gas chromatography was performed. In this study, levels of both saturated and unsaturated fatty acids in three experimental and one control were identified as follows: A: saturated fatty acids: Meristic C14: 0/Palmitic C16: 0/Hepta decaenoic C17: 0/Stearic C18: 0/Arashidic C20: 0/B:Mono unsaturated fatty acids: palmitoleic C16: 1-W7/Oleic C18: 1-W9/Gadoleic C20: 1-W9 C:Poly unsaturated fatty acids: Linoleic C18: 2-W6/α-Linolenic C18: 3-W3 D:High unsaturated fatty acids: Arachidonic C20: 4-W6 Eicosapentaenoic acid C20: 5-EPA/W3 Docosahexaenoic C22: 6-DHA/W3 Results of this study was to determine, Thyme and rosemary extracts containing silver carp minced stored in freezing conditions, Stability of different types of fatty acids, monounsaturated fatty acids, poly-unsaturated fatty acids, omega-3 and omega-6 fatty acids are. So that none of the fatty acids measured were not significant 100% increase or decrease, While changes in the fatty acid oxidation during storage time is minimized. The results obtained from the fatty acid profiles and indicators of their and statistical tests show that treatment with rosemary extract More stable during storage (-18) ° C In comparison with the control and other treatments are shown; And at relatively low compared to other treatments and control samples oleic acid and linoleic acid, palmitic more. According to studies,in Silver carp minced that containing rosemary extract, end of the storage period of six months. Were usable, so even rosemary extract the shelf-life examples to increase more than six months.
Resumo:
The present study aimed production of a new product with various texture and sensory properties in chase of the impetus for increasing human consumption considering suitable resources of Kilka fish in Caspian Sea. Following deheading, gutting, and brining, common Kilka were battered in two different formulations, i.e. simple batter and tempura batter, via automated predusting machinery and then, they were fried through flash frying for 30 seconds at 170°C in sunflower oil after they were breaded with bread crumbs flour. The products were subjected to continuous freezing at -40°C and were kept at -18°C in cold storage for four months once they were packed. Chemical composition (protein, fat, moisture, and ash), fatty acid profiles (29 fatty acids), chemical indices of spoilage (peroxide value, thiobarbituric acid, free fatty acids, and volatile nitrogen), and microbial properties (total bacteria count and coliform count) were compared in fresh and breaded Kilka at various times before frying (raw breaded Kilka), after frying (zero-phase), and in various months of frozen storage (phases 1, 2, 3, and 4). Organoleptic properties of breaded Kilka (i.e. odor, taste, texture, crispiness, cohesiveness of batter) and general acceptability in the phases 0, 1, 2, 3, and 4 were evaluated. The results obtained from chemical composition and fatty acid profiles in common Kilka denoted that MUFA, PUFA, and SFA were estimated to be 36.96, 32.85, and 29.12 g / 100g lipid, respectively. Levels of ù-3 and ù-6 were 7.6 and 1.12 g / 100 gr lipid, respectively. Docosahexaonoic acid (20.79%) was the highest fatty acid in PUFA group. ù-3/ù-6 and PUFA/SFA ratios were 7.6 and 1.12, respectively. The high rates of the indices and high percentage of ù-3 fatty acid in common Kilka showed that the fish can be considered as invaluable nutritional and fishery resources and commonsensical consumption of the species may reduce the risk of cardiovascular diseases. Frying breaded Kilka affected overall fat and moisture contents so that moisture content in fried breaded Kilka decreased significantly compared to raw breaded Kilka, while it was absolutely reverse for fat content. Overall fat content in tempura batter treatment was significantly lower than that of simple batter treatment (P≤0.05). Presence of hydrocolloids, namely proteins, starch, gum, and other polysaccharides, in tempura batter may prohibit moisture evaporation and placement with oil during frying process in addition to boosting water holding capacity through confining water molecules. During frying process, fatty acids composition of breaded Kilka with various batters changed so that rates of some fatty acids such as Palmitic acid (C16:0), Stearic acid (C18:0), Oleic acid (C18:1 ù-9cis), and linoleic acid (C18:3 ù-3) increased considerably following frying; however, ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios (Polyan index) decreased significantly after frying. ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios in tempura batter treatment were higher than those of simple batter treatment which is an indicator of higher nutritional value of breaded Kilka with tempura batter. Significant elevations were found in peroxide, thiobarbituric acid, and free fatty acids in fried breaded Kilka samples compared to raw samples which points to fat oxidation during cooking process. Overall microorganism count and coliform count decreased following heating process. Both breaded Kilka samples were of high sanitation quality at zero-phase according to ICMSF Standard. The results acquired from organoleptic evaluation declared that odor, cohesiveness, and general acceptability indices, among others, had significant differences between the treatments (P≤0.05). In all evaluated properties, breaded Kilka with tempura batter in different phases gained higher scores than breaded Kilka with simple batter. During cold storage of various treatments of breaded Kilka, total lipid content, PUFA, MUFA, ù-3, ù- 3/ù-6, PUFA/SFA, Polyen index decreased significantly. The mentioned reductions in addition to significant elevation of spoilage indices, namely peroxide, thiobarbituric acid, and free fatty acids, during frozen storage, indicate to oxidation and enzymatic mechanism activity during frozen storage of breaded Kilka. Considering sensory evaluation at the end of the fourth month and TVB-N contents exceeded eligible rate in the fourth month, shelf life of the products during frozen storage was set to be three months at -18°C. The results obtained from statistical tests indicate to better quality of breaded Kilka processed with tempura batter compared to simple batter in terms of organoleptic evaluation, spoilage indices, and high quality of fat in various sampling phases.