964 resultados para 100105 Genetically Modified Field Crops and Pasture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several key issues need to be resolved before an efficient and reproducible Agrobacterium-mediated sugarcane transformation method can be developed for a wider range of sugarcane cultivars. These include loss of morphogenetic potential in sugarcane cells after Agrobacterium-mediated transformation, effect of exposure to abiotic stresses during in vitro selection, and most importantly the hypersensitive cell death response of sugarcane (and other nonhost plants) to Agrobacterium tumefaciens. Eight sugarcane cultivars (Q117, Q151, Q177, Q200, Q208, KQ228, QS94-2329, and QS94-2174) were evaluated for loss of morphogenetic potential in response to the age of the culture, exposure to Agrobacterium strains, and exposure to abiotic stresses during selection. Corresponding changes in the polyamine profiles of these cultures were also assessed. Strategies were then designed to minimize the negative effects of these factors on the cell survival and callus proliferation following Agrobacterium-mediated transformation. Some of these strategies, including the use of cell death protector genes and regulation of intracellular polyamine levels, will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nutritive value of transgenic peas expressing an a-amylase inhibitor (alpha-Ail) was evaluated with broiler chickens. The effects of feeding transgenic peas on the development of visceral organs associated with digestion and nutrient absorption were also examined. The chemical composition of the conventional and the transgenic peas used in this study were similar. In the two feeding trials, that were conducted normal and transgenic peas were incorporated into a maize-soybean diet at concentrations up to 500 g kg(-1). The diets were balanced to contain similar levels of apparent metabolisable energy (AME) and amino acids. In the first trial, the birds were fed the diets from 3 to 17days post-hatching and with levels of transgenic peas at 250 g kg(-1) or greater there was a significant reduction in body weight but an increase in feed intake resulting in deceased feed conversion efficiency. In the second trial, in which the birds were fed diets containing 300 g kg(-1) transgenic peas until 40 days of age, growth performance was significantly reduced. It was also demonstrated that the ileal starch digestibility coefficient (0.80 vs 0.42) was significantly reduced in the birds fed transgenic peas. Determination of AME and ileal digestibility of amino acids in 5-week-old broilers demonstrated a significant reduction in AME (12.12 vs 5.08 MJ kg(-1) DM) in the birds fed the transgenic peas. The AME value recorded for transgenic peas reflected the lower starch digestibility of this line. Real digestion of protein and amino acids was unaffected by treatment. Expression of a-Ail in peas did not appear to affect bird health or the utilisation of dietary protein. However, the significant reduction in ileal digestion of starch in transgenic peas does reduce the utility of this feedstuff in monogastric diets where efficient energy utilisation is required. (c) 2006 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetically modified (GM) crops and sustainable development remain the foci of much media attention, especially given current concerns about a global food crisis. However, whilst the latter is embraced with enthusiasm by almost all groups, GM crops generate very mixed views. Some countries have welcomed GM, but others, notably those in Europe, adopt a cautious stance. This article aims to review the contribution that GM crops can make to agricultural sustainability in the developing world. Following brief reviews of both issues and their linkages, notably the pros and cons of GM cotton as a contributory factor in sustainability, a number of case studies from resourcepoor cotton farmers in Makhathini Flats, South Africa, is presented for a six-year period. Data on expenditure, productivity and income indicate that Bacillus thuringiensis (Bt) cotton is advantageous because it reduces costs, for example, of pesticides, and increases income, and the indications are that those benefits continued over at least the six years covered by the studies. There are repercussions of the additional income in the households; debts are reduced and money is invested in children's education and in the farms. However, in the general GM debate, the results show that GM crops are not miracle products which alleviate poverty at a stroke, but nor is there evidence that they will cause the scale of environmental damage associated with indiscriminate pesticide use. Indeed, for some GM antagonists, perhaps even the majority, such debates are irrelevant – the transfer of genes between species is unnatural and unethical. For them, GM crops will never be acceptable despite the evidence and pressure to increase world food production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasing set of evidence has been reported on how consumers could potentially react to the introduction of genetically modified food. Studies typically contain some empirical evidence and some theoretical explanations of the data, however, to date limited effort has been posed on systematically reviewing the existing evidence and its implications for policy. This paper contributes to the literature by bringing together the published evidence on the behavioural frameworks and evidence on the process leading to the public acceptance of genetically modified (GM) food and organisms (GMOs). In doing so, we employ a set of clearly defined search tools and a limited number of comprehensive key words. The study attempts to gather an understanding of the published findings on the determinants of the valuation of GM food - both in terms of willingness to accept and the willing-to-pay a premium for non-GM food, trust with information sources on the safety and public health and ultimate attitudes underpinning such evidence. Furthermore, in the light of such evidence, we formulate some policy strategies to deal with public uncertainly regarding to GMOs and, especially GM food. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biotechnology refers to the broad set of techniques that allow genetic manipulation of organisms. The techniques of biotechnology have broad implications for many industries, however it promises the greatest innovations in the production of products regulated by the Food and Drug Administration (FDA). Like many other powerful new technologies, biotechnology may carry risks as well as benefits. Several of its applications have engendered fervent emotional reactions and raised serious ethical concerns, especially internationally. ^ First, in my paper I discuss the historical and technical background of biotechnology. Second, I examine the development of biotechnology in Europe, the citizens' response to genetically modified (“GM”) foods and the governments' response. Third, I examine the regulation of bioengineered products and foods in the United States. ^ In conclusion, there are various problems with the current status of regulation of GM foods in the United States. These are four basic flaws: (1) the Coordinated Framework allows for too much jurisdictional overlap of biotechnological foods, (2) GM foods are considered GRAS and consequently, are placed on the market without pre-market approval, (3) federal mandatory labeling of GM foods cannot occur until the question of whether or not nondisclosure of a genetic engineering production processes is misleading or material information and (4) an independent state-labeling scheme of GM foods will most likely impede interstate commerce. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-peril crop insurance is a valuable risk management tool which allows you to insure against losses on your farm due to adverse weather conditions, price fluctuations, and unavoidable pests and diseases. It shifts unavoidable production risks to an insurance company for the payment of a fixed amount of premium per acre. This publication assists readers in understanding the basics of the federal crop insurance program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give fanners the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables'on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant' policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cultivation of genetically modified (GM) crops in the EU is highly harmonised, involving a central authorisation procedure that aims to ensure a high level of environmental and human health protection. However conflicts over authority persist and the Commission has responded to a combination of internal and external pressures with a more flexible approach to coexistence, a proposed opt-out clause and recently a promise by the head of the Commission to review the existing EU GM legislative regime, providing an opportunity to consider and suggest paths of development. In light of the significance of multilevel governance and subsidiarity for GM cultivation, this paper considers the policy-making powers of the Member States and subnational regions in this regime, focussing upon post-authorisation options in particular. A number of core mechanisms exist, including voluntary measures, safeguard clauses, coexistence measures, a proposed express opt-out and Article 4(2) TEU on ‘national identity. These mechanisms are examined in light of the goals and challenges of multilevel governance, in order to consider whether the relevant powers are located at the appropriate level. Overall, it is apparent that the developments occurring at the EU level are strengthening multilevel governance, but with significant opportunities to improve it further through focussing on the supporting roles and the regional levels in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A current advance within the agricultural industry is the use of genetic engineering to produce novel crops for food production. This technology raises questions about how societies should position themselves with respect to genetically modified (GM) crop development and implementation; namely, how should the potentials and risks of this technology be evaluated? We argue that current methods to evaluate the risks and benefits of GM crops are inadequate and not conducive to the strategic development of this technology, where a way to ameliorate technology assessments for GM crops is to include farmers in the research process of evaluating these crops prior to their commercialization. However, particularities concerning the ethical status of such research require special consideration and vigilance. For example, in such technology assessment initiatives, farmers would occupy both the roles of research participant and research investigator. Other particularities surface due to factors related to the nature of GM crops. These particularities are examined with reference to concepts drawn from the field of research ethics, namely informed consent, compensatory decisions, and issues of participant inclusion/exclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is ongoing debate concerning the possible environmental and human health impacts of growing genetically modified (GM) crops. Here, we report the results of a life-cycle assessment (LCA) comparing the environmental and human health impacts of conventional sugar beet growing regimes in the UK and Germany with those that might be expected if GM herbicide-tolerant (to glyphosate) sugar beet is commercialized. The results presented for a number of environmental and human health impact categories suggest that growing the GM herbicide-tolerant crop would be less harmful to the environment and human health than growing the conventional crop, largely due to lower emissions from herbicide manufacture, transport and field operations. Emissions contributing to negative environmental impacts, such as global warming, ozone depletion, ecotoxicity of water and acidification and nutrification of soil and water, were much lower for the herbicide-tolerant crop than for the conventional crop. Emissions contributing to summer smog, toxic particulate matter and carcinogenicity, which have negative human health impacts, were also substantially lower for the herbicide-tolerant crop. The environmental and human health impacts of growing GM crops need to be assessed on a case-by-case basis using a holistic approach. LCA is a valuable technique for helping to undertake such assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An evidence-based review of the potential impact that the introduction of genetically-modified (GM) cereal and oilseed crops could have for the UK was carried out. The inter-disciplinary research project addressed the key research questions using scenarios for the uptake, or not, of GM technologies. This was followed by an extensive literature review, stakeholder consultation and financial modelling. The world area of canola, oilseed rape (OSR) low in both erucic acid in the oil and glucosinolates in the meal, was 34M ha in 2012 of which 27% was GM; Canada is the lead producer but it is also grown in the USA, Australia and Chile. Farm level effects of adopting GM OSR include: lower production costs; higher yields and profits; and ease of farm management. Growing GM OSR instead of conventional OSR reduces both herbicide usage and environmental impact. Some 170M ha of maize was grown in the world in 2011 of which 28% was GM; the main producers are the USA, China and Brazil. Spain is the main EU producer of GM maize although it is also grown widely in Portugal. Insect resistant (IR) and herbicide tolerant (HT) are the GM maize traits currently available commercially. Farm level benefits of adopting GM maize are lower costs of production through reduced use of pesticides and higher profits. GM maize adoption results in less pesticide usage than on conventional counterpart crops leading to less residues in food and animal feed and allowing increasing diversity of bees and other pollinators. In the EU, well-tried coexistence measures for growing GM crops in the proximity of conventional crops have avoided gene flow issues. Scientific evidence so far seems to indicate that there has been no environmental damage from growing GM crops. They may possibly even be beneficial to the environment as they result in less pesticides and herbicides being applied and improved carbon sequestration from less tillage. A review of work on GM cereals relevant for the UK found input trait work on: herbicide and pathogen tolerance; abiotic stress such as from drought or salinity; and yield traits under different field conditions. For output traits, work has mainly focussed on modifying the nutritional components of cereals and in connection with various enzymes, diagnostics and vaccines. Scrutiny of applications submitted for field trial testing of GM cereals found around 9000 applications in the USA, 15 in Australia and 10 in the EU since 1996. There have also been many patent applications and granted patents for GM cereals in the USA for both input and output traits;an indication of the scale of such work is the fact that in a 6 week period in the spring of 2013, 12 patents were granted relating to GM cereals. A dynamic financial model has enabled us to better understand and examine the likely performance of Bt maize and HT OSR for the south of the UK, if cultivation is permitted in the future. It was found that for continuous growing of Bt maize and HT OSR, unless there was pest pressure for the former and weed pressure for the latter, the seed premia and likely coexistence costs for a buffer zone between other crops would reduce the financial returns for the GM crops compared with their conventional counterparts. When modelling HT OSR in a four crop rotation, it was found that gross margins increased significantly at the higher levels of such pest or weed pressure, particularly for farm businesses with larger fields where coexistence costs would be scaled down. The impact of the supply of UK-produced GM crops on the wider supply chain was examined through an extensive literature review and widespread stakeholder consultation with the feed supply chain. The animal feed sector would benefit from cheaper supplies of raw materials if GM crops were grown and, in the future, they might also benefit from crops with enhanced nutritional profile (such as having higher protein levels) becoming available. This would also be beneficial to livestock producers enabling lower production costs and higher margins. Whilst coexistence measures would result in increased costs, it is unlikely that these would cause substantial changes in the feed chain structure. Retailers were not concerned about a future increase in the amount of animal feed coming from GM crops. To conclude, we (the project team) feel that the adoption of currently available and appropriate GM crops in the UK in the years ahead would benefit farmers, consumers and the feed chain without causing environmental damage. Furthermore, unless British farmers are allowed to grow GM crops in the future, the competitiveness of farming in the UK is likely to decline relative to that globally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of biotechnology techniques in plant breeding and the new commercial applications have raised public and scientific concerns about the safety of genetically modified (GM) crops and trees. To find out the feasibility of these new technologies in the breeding of commercially important Finnish hardwood species and to estimate the ecological risks of the produced transgenic plants, the experiments of this study have been conducted as a part of a larger project focusing on the risk assessment of GM-trees. Transgenic Betula pendula and Populus trees were produced via Agrobacterium mediated transformation. Stilbene synthase (STS) gene from pine (Pinus sylvestris) and chitinase gene from sugar beet (Beta vulgaris) were transferred to (hybrid) aspen and birch, respectively, to improve disease resistance against fungal pathogens. To modify lignin biosynthesis, a 4-coumarate:coenzyme A ligase (4CL) gene fragment in antisense orientation was introduced into two birch clones. In in vitro test, one transgenic aspen line expressing pine STS gene showed increased resistance to decay fungus Phellinus tremulae. In the field, chitinase transgenic birch lines were more susceptible to leaf spot (Pyrenopeziza betulicola) than the non-transgenic control clone while the resistance against birch rust (Melampsoridium betulinum) was improved. No changes in the content or composition of lignin were detected in the 4CL antisense birch lines. In order to evaluate the ecological effects of the produced GM trees on non-target organisms, an in vitro mycorrhiza experiment with Paxillus involutus and a decomposition experiment in the field were performed. The expression of a transgenic chitinase did not disturb the establishment of mycorrhizal symbiosis between birch and P. involutus in vitro. 4CL antisense transformed birch lines showed retarded root growth but were able to form normal ectomycorrhizal associations with the mycorrhizal fungus in vitro. 4CL lines also showed normal litter decomposition. Unexpected growth reductions resulting from the gene transformation were observed in chitinase transgenic and 4CL antisense birch lines. These results indicate that genetic engineering can provide a tool in increasing disease resistance in Finnish tree species. More extensive data with several ectomycorrhizal species is needed to evaluate the consequences of transgene expression on beneficial plant-fungus symbioses. The potential pleiotropic effects of the transgene should also be taken into account when considering the safety of transgenic trees.