995 resultados para 1-propanol
Resumo:
The electrocatalytic oxidation of 1-propanol was investigated on platinum electrodes modified by submonolayers of Pb and Sn in acid media. An increase of oxidation rates observed for both Pb and Sn, and the influence of theta values was investigated. The values of the apparent activation energy evaluated from the Arrhenius plots concerning the electrochemical oxidation of 1-propanol on modified platinzed platinum electrodes, reveal a significant decrease in the presence of upd Sn and Ph adatoms. A decrease from 56 to 26 U mol(-1) in the presence of Sn. and from 78 to 25 U mol(-1) for Ph adatoms are some illustrative values which reflect the promoting effect of the upd adatoms.
Resumo:
Presently monoethanolamine (MEA) remains the industrial standard solvent for CO2 capture processes. Operating issues relating to corrosion and degradation of MEA at high temperatures and concentrations, and in the presence of oxygen, in a traditional PCC process, have introduced the requisite for higher quality and costly stainless steels in the construction of capture equipment and the use of oxygen scavengers and corrosion inhibitors. While capture processes employing MEA have improved significantly in recent times there is a continued attraction towards alternative solvents systems which offer even more improvements. This movement includes aqueous amine blends which are gaining momentum as new generation solvents for CO2 capture processes. Given the exhaustive array of amines available to date endless opportunities exist to tune and tailor a solvent to deliver specific performance and physical properties in line with a desired capture process. The current work is focussed on the rationalisation of CO2 absorption behaviour in a series of aqueous amine blends incorporating monoethanolamine, N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) as solvent components. Mass transfer/kinetic measurements have been performed using a wetted wall column (WWC) contactor at 40°C for a series of blends in which the blend properties including amine concentration, blend ratio, and CO2 loadings from 0.0-0.4 (moles CO2/total moles amine) were systematically varied and assessed. Equilibrium CO2 solubility in each of the blends has been estimated using a software tool developed in Matlab for the prediction of vapour liquid equilibrium using a combination of the known chemical equilibrium reactions and constants for the individual amine components which have been combined into a blend.From the CO2 mass transfer data the largest absorption rates were observed in blends containing 3M MEA/3M Am2 while the selection of the Am2 component had only a marginal impact on mass transfer rates. Overall, CO2 mass transfer in the fastest blends containing 3M MEA/3M Am2 was found to be only slightly lower than a 5M MEA solution at similar temperatures and CO2 loadings. In terms of equilibrium behaviour a slight decrease in the absorption capacity (moles CO2/mole amine) with increasing Am2 concentration in the blends with MEA was observed while cyclic capacity followed the opposite trend. Significant increases in cyclic capacity (26-111%) were observed in all blends when compared to MEA solutions at similar temperatures and total amine concentrations. In view of the reasonable compromise between CO2 absorption rate and capacity a blend containing 3M MEA and 3M AMP as blend components would represent a reasonable alternative in replacement of 5M MEA as a standalone solvent.
Resumo:
Chitosan derivatives were prepared by reductive alkylation using glutaraldehyde and 3-amino-1-propanol. The reducing agent used was the sodium borohydride. Tests of solubility, stability and viscosity were performed in order to evaluate these parameters effects in the reaction conditions (molar ratio of the reactants and presence of nitrogen in the reaction system). The molecular structure of commercial chitosan was determined by infrared (IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The intrinsic viscosity and average molecular weight of the chitosan were determined by viscosimetry in 0.3 M acetic acid aqueous solution 0.2 M sodium acetate at 25 ºC. The derivatives of chitosan soluble in aqueous acidic medium were characterized by 1H NMR. The rheological behavior of the chitosan and of the derivative of chitosan (sample QV), which presented the largest viscosity, were studied as a function of polymer concentration, temperature and ionic strength of the medium. The results of characterization of the commercial chitosan (the degree of deacetylation obtained equal 78.45 %) used in this work confirmed a sample of low molar weight (Mv = 3.57 x 104 g/mol) and low viscosity (intrinsic viscosity = 213.56 mL/g). The chemical modification of the chitosan resulted in derivatives with thickening action. The spectra of 1H NMR of the soluble derivatives in acid aqueous medium suggested the presence of hydrophobic groups grafted into chitosan in function of the chemical modification. The solubility of the derivatives of chitosan in 0.25 M acetic acid aqueous solution decreased with increase of the molar ratio of the glutaraldehyde and 3-amino-1-propanol in relation to the chitosan. The presence of nitrogen and larger amount of reducing agent in reaction system contributed to the increase of the solubility, the stability and the viscosity of the systems. The viscosity of the polymeric suspensions in function of the shear rate increased significantly with polymer concentration, suggesting the formation of strong intermolecular associations. The chitosan presented pseudoplastic behavior with the increase in polymer concentration at a low shear rate. The derivative QV presented pseudoplastic behavior at all concentrations used and in a large range of shear rate. The viscosity of chitosan in solution decreased with an increase of the temperature and with the presence of salt. However, there was an increase of the viscosity of the chitosan solution at higher temperature (65 ºC) and ionic strength of the medium which were promoted by hydrophobic associating of the acetamide groups. The solutions of the chitosan derivatives (sample QV) were significantly more viscous than chitosan solution and showed higher thermal stability in the presence of salt as a function of the hydrophobic groups grafted into chitosan backbone
Resumo:
Technical or contaminated ethanol products are sometimes ingested either accidentally or on purpose. Typical misused products are black-market liquor and automotive products, e.g., windshield washer fluids. In addition to less toxic solvents, these liquids may contain the deadly methanol. Symptoms of even lethal solvent poisoning are often non-specific at the early stage. The present series of studies was carried out to develop a method for solvent intoxication breath diagnostics to speed up the diagnosis procedure conventionally based on blood tests. Especially in the case of methanol ingestion, the analysis method should be sufficiently sensitive and accurate to determine the presence of even small amounts of methanol from the mixture of ethanol and other less-toxic components. In addition to the studies on the FT-IR method, the Dräger 7110 evidential breath analyzer was examined to determine its ability to reveal a coexisting toxic solvent. An industrial Fourier transform infrared analyzer was modified for breath testing. The sample cell fittings were widened and the cell size reduced in order to get an alveolar sample directly from a single exhalation. The performance and the feasibility of the Gasmet FT-IR analyzer were tested in clinical settings and in the laboratory. Actual human breath screening studies were carried out with healthy volunteers, inebriated homeless men, emergency room patients and methanol-intoxicated patients. A number of the breath analysis results were compared to blood test results in order to approximate the blood-breath relationship. In the laboratory experiments, the analytical performance of the Gasmet FT-IR analyzer and Dräger 7110 evidential breath analyzer was evaluated by means of artificial samples resembling exhaled breath. The investigations demonstrated that a successful breath ethanol analysis by Dräger 7110 evidential breath analyzer could exclude any significant methanol intoxication. In contrast, the device did not detect very high levels of acetone, 1-propanol and 2-propanol in simulated breath. The Dräger 7110 evidential breath ethanol analyzer was not equipped to recognize the interfering component. According to the studies the Gasmet FT-IR analyzer was adequately sensitive, selective and accurate for solvent intoxication diagnostics. In addition to diagnostics, the fast breath solvent analysis proved feasible for controlling the ethanol and methanol concentration during haemodialysis treatment. Because of the simplicity of the sampling and analysis procedure, non-laboratory personnel, such as police officers or social workers, could also operate the analyzer for screening purposes.
Resumo:
The critical behavior of osmotic susceptibility in an aqueous electrolyte mixture 1-propanol (1P)+water (W)+potassium chloride is reported. This mixture exhibits re-entrant phase transitions and has a nearly parabolic critical line with its apex representing a double critical point (DCP). The behavior of the susceptibility exponent is deduced from static light-scattering measurements, on approaching the lower critical solution temperatures (TL’s) along different experimental paths (by varying t) in the one-phase region. The light-scattering data analysis substantiates the existence of a nonmonotonic crossover behavior of the susceptibility exponent in this mixture. For the TL far away from the DCP, the effective susceptibility exponent γeff as a function of t displays a nonmonotonic crossover from its single limit three-dimensional (3D)-Ising value ( ∼ 1.24) toward its mean-field value with increase in t. While for that closest to the DCP, γeff displays a sharp, nonmonotonic crossover from its nearly doubled 3D-Ising value toward its nearly doubled mean-field value with increase in t. The renormalized Ising regime extends over a relatively larger t range for the TL closest to the DCP, and a trend toward shrinkage in the renormalized Ising regime is observed as TL shifts away from the DCP. Nevertheless, the crossover to the mean-field limit extends well beyond t>10−2 for the TL’s studied. The observed crossover behavior is attributed to the presence of strong ion-induced clustering in this mixture, as revealed by various structure probing techniques. As far as the critical behavior in complex or associating mixtures with special critical points (like the DCP) is concerned, our results indicate that the influence of the DCP on the critical behavior must be taken into account not only on the renormalization of the critical exponent but also on the range of the Ising regime, which can shrink with decrease in the influence of the DCP and with the extent of structuring in the system. The utility of the field variable tUL in analyzing re-entrant phase transitions is demonstrated. The effective susceptibility exponent as a function of tUL displays a nonmonotonic crossover from its asymptotic 3D-Ising value toward a value slightly lower than its nonasymptotic mean-field value of 1. This behavior in the nonasymptotic, high tUL region is interpreted in terms of the possibility of a nonmonotonic crossover to the mean-field value from lower values, as foreseen earlier in micellar systems.
Resumo:
Thirteen host guest compounds of 3,5-dihydroxybenzoic acid (DHBA) have been structurally characterized. Water molecules occupy the peripheries of a hexagonal void, created with DHBA molecules, and act as ``hooks'' to connect the guest molecules with the host-framework via hydrogen bonding. The ``water hook'' is an OH group acting as a donor. Consequently, the guest molecules were chosen so that they contain good hydrogen bond acceptor functionalities. A number of multicomponent hydrates were isolated with stoichiometries (DHBA)(x)(H2O). (guest),. Of these, compounds with the following as guests were obtained as crystals that were good enough for single crystal work: ethyl acetate (EtOAc), diethyl oxalate, dimethyl oxalate, di(n-propyl) oxalate, diethyl malonate, diethyl succinate, chloroacetonitrile, N,N-dimethyl formamide (DMF), acetone, dimethyl sulfoxide (DMSO), 1-propanol, and 2-butanol. From 2-butanol, a hemihydrate, (DHBA)(2)(H2O), was also obtained concomitantly. Further to guest stabilization, water acts as a good mediator of effective crystal packing and also determines the topology of the host framework. En the present series of compounds, the role of water is wide ranging, and it is not easy to classify it specifically as a host or as a guest.
Resumo:
People with coeliac disease have to maintain a gluten-free diet, which means excluding wheat, barley and rye prolamin proteins from their diet. Immunochemical methods are used to analyse the harmful proteins and to control the purity of gluten-free foods. In this thesis, the behaviour of prolamins in immunological gluten assays and with different prolamin-specific antibodies was examined. The immunoassays were also used to detect residual rye prolamins in sourdough systems after enzymatic hydrolysis and wheat prolamins after deamidation. The aim was to characterize the ability of the gluten analysis assays to quantify different prolamins in varying matrices in order to improve the accuracy of the assays. Prolamin groups of cereals consist of a complex mixture of proteins that vary in their size and amino acid sequences. Two common characteristics distinguish prolamins from other cereal proteins. Firstly, they are soluble in aqueous alcohols, and secondly, most of the prolamins are mainly formed from repetitive amino acid sequences containing high amounts of proline and glutamine. The diversity among prolamin proteins sets high requirements for their quantification. In the present study, prolamin contents were evaluated using enzyme-linked immunosorbent assays based on ω- and R5 antibodies. In addition, assays based on A1 and G12 antibodies were used to examine the effect of deamidation on prolamin proteins. The prolamin compositions and the cross-reactivity of antibodies with prolamin groups were evaluated with electrophoretic separation and Western blotting. The results of this thesis research demonstrate that the currently used gluten analysis methods are not able to accurately quantify barley prolamins, especially when hydrolysed or mixed in oats. However, more precise results can be obtained when the standard more closely matches the sample proteins, as demonstrated with barley prolamin standards. The study also revealed that all of the harmful prolamins, i.e. wheat, barley and rye prolamins, are most efficiently extracted with 40% 1-propanol containing 1% dithiothreitol at 50 °C. The extractability of barley and rye prolamins was considerably higher with 40% 1-propanol than with 60% ethanol, which is typically used for prolamin extraction. The prolamin levels of rye were lowered by 99.5% from the original levels when an enzyme-active rye-malt sourdough system was used for prolamin degradation. Such extensive degradation of rye prolamins suggest the use of sourdough as a part of gluten-free baking. Deamidation increases the diversity of prolamins and improves their solubility and ability to form structures such as emulsions and foams. Deamidation changes the protein structure, which has consequences for antibody recognition in gluten analysis. According to the resuts of the present work, the analysis methods were not able to quantify wheat gluten after deamidation except at very high concentrations. Consequently, deamidated gluten peptides can exist in food products and remain undetected, and thus cause a risk for people with gluten intolerance. The results of this thesis demonstrate that current gluten analysis methods cannot accurately quantify prolamins in all food matrices. New information on the prolamins of rye and barley in addition to wheat prolamins is also provided in this thesis, which is essential for improving gluten analysis methods so that they can more accurately quantify prolamins from harmful cereals.
Resumo:
A simple but self-consistent microscopic theory for the time dependent solvation energy of both ions and dipoles is presented which includes, for the first time, the details of the self-motion of the probe on its own solvation dynamics. The theory leads to several interesting predictions. The most important of them is that, for dipolar solvation, both the rotational and the translational motions of the dipolar solute probe can significantly accelerate the rate of solvation. In addition, the rotational self-motion of the solute can also give rise to an additional mechanism of nonexponentiality in solvation time correlation functions in otherwise slow liquids. A comparison between the present theoretical predictions and the recent experimental studies of Maroncelli et al. on solvation dynamics of aniline in l-propanol seems to indicate that the said experiments have missed the initial solvent response up to about 45 ps. After mapping the experimental results on the redefined time scale, the theoretical results can explain the experimental results for solvation of aniline in 1-propanol very well. For ionic solvation, the translational motion is significant for light solutes only. For example, for Li+ in water, translational motion speeds up the solvation by about 20%. The present theory demonstrates that in dipolar solvation the partial quenching of the self-motion due to the presence of specific solute-solvent interactions (such as H-bonding) may lead to a much slower solvation than that when the self-motion is present. This point has been discussed. In addition, we present the theoretical results for solvation of aniline in propylene carbonate, Here, the solvation is predicted to be complete within 15-20 ps.
Resumo:
Some kinds of rare earth beta-diketone complexes with blue-violet light absorption edge were synthesized using the ligands of thenoyltrifluoroacctone (HTTA), 2, 2'-dipyridyl (BIPY) and different metal ions (Gd3+, Sm3+ and La3+). Their contents, structures and optoelectronic parameters were monitored by elemental analysis, MS, IR and UV spectra. The solubility of rare earth beta-diketone complexes in 2, 2, 3, 3-tetrafluoro-1-propanol (TFP) and absorption properties of their films in the region 300-800 nm were measured. The influence on the difference of absorption maximum from rare earth beta-diketone complexes to beta-diketone ligand by different metal ions was studied. In addition, the thermal stability of rare earth beta-diketone complexes was also reported. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two new azo dyes of alpha-isoxazolylazo-beta-dilcetones and their Ni(II) and Cu(II) complexes with blue-violet light wavelength were synthesized using a coupling component, different diazo components and metal (II) ions (Ni2+ and Cu2+). Based on the elemental analysis, MS spectra and FT-IR spectral analyses, azo dyes were unequivocally shown to exist as hydrazoketo and azoenol forms which were respectively obtained from the solution forms and from the solid forms. The action of sodium methoxide (NaOMe) on azo dyes in solutions converts hydrazoketo form into azoenol form, so azo dyes are coordinated with metal (II) ions as co-ligands in the azoenol forms. The solubility of all the compounds in common organic solvents such as 2,2,3,3-tetrafluoro-1-propanol (TFP) or chloroform (CHCl3) and absorption properties of spin-coating thin films were measured. The difference of absorption maxima from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. It is found that these new metal (II) complexes had potential application for high-density digital versatile disc-recordable (HD-DVD-R) system due to their good solubility in organic solvents, reasonable and controllable absorption spectra in blue-violet light region and high thermal stability. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel azo dye containing isoxazole ring and beta-diketone derivative (TIAD) and its two nickel (II) complexes (Ni (II)-ETIAD and Ni (II)-HTIAD) were synthesized in order to obtain a blue-violet light absorption and better thermal stability as a promising organic storage material for next generation of high density digital versatile disc-recordable (HD-DVD-R) systems that uses a high numerical aperture of 0.85 at 405 nm wavelength. Their structures were confirmed on the basis of elemental analysis, MS, FT-IR, UV-Vis and magnetic data. Their solubility in 2,2,3,3-tetrafluoro-1-propanol (TFP) and absorption properties of thin film were measured. The difference of absorption maximum from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Monolithic columns of capillary electrochromatography (CEC) with weak electroosmotic flow (EOF) have been prepared by in situ polymerization of butyl methacrylate and ethylene dimethacrylate, without any charged groups in the reaction mixture. The reproducibility of such columns has been proved good no matter whether they are prepared in the same batch or in different batches. In the case of BMA-EDMA monoliths, besides the traditional ternary mixture - 1-propanol, 1,4-butanediol, and water, binary porogenic solvents with only alcohols have also been adopted. Compared with ternary porogenic solvents, the design with binary ones allows for fine control of the pore diameter and the formation of the specific surface of the monolithic polymers. The composition of porogenic reagents has also been shown to have an effect on EOF in the column systems. In addition, the Joule heat effect in such columns has been studied by varying the inner diameter of columns. Through the separation of acidic compounds, monolithic columns with low EOF have shown potential in the analysis of charged samples.
Resumo:
Six novel dibenzyl bromophenols (1-6) with different dimerization patterns and two propyl bromophenol derivatives (7 and 8), together with 11 known bromophenol derivatives, were isolated from the ethanolic extract of the brown alga Leathesia nana. On the basis of spectroscopic methods the structures of the new compounds were determined as 5,6'-diethyloxymethyl-3,4,2'-tribromo-2,3',4'-trihydroxydiphenyl ether (1), 2-(2,3-dibromo-4,5-dihydroxybenzyl)-3,5-dihydroxy-4-methoxybenzyl alcohol (2), 6-(2,3-dibromo-4,5dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether (3), 9,10-dihydro-9,10-dimethoxy-3,4,7,8-tetrabromo-1,2,5,6-tetrahydroxyanthracene (4), (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroisobenzofuran (5), rel-(4aS*,10aR*)-(+/-)-6,7-dibromo-4a-hydroxy-3,8-dihydroxymethyl-10a-methoxy- 1,4,4a, 10a-tetrahydrodibenzo[b,e][1,4]dioxin-1-one (6), (E)-2-methyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)propenal (7), and 2-methyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)-1-propanol (8). Some compounds including 3 showed in vitro selective cytotoxicity against several human cancer cell lines. This is the first brown alga to be reported containing bromophenols.