972 resultados para 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE NEUROTOXICITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have shown that deficits in olfactory and cognitive functions precede the classical motor symptoms seen in Parkinson`s disease (PD) and that olfactory testing may contribute to the early diagnosis of this disorder. Although the primary cause of PD is still unknown, epidemiological studies have revealed that its incidence is increased in consequence of exposure to certain environmental toxins. In this study, most of the impairments presented by C57BL/6 mice infused with a single intranasal (i.n.) administration of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (1 mg/nostril) were similar to those observed during the early phase of PD, when a moderate loss of nigral dopamine neurons results in olfactory and memory deficits with no major motor impairments. Such infusion decreased the levels of the enzyme tyrosine hydroxylase in the olfactory bulb, striatum, and substantia nigra by means of apoptotic mechanisms, reducing dopamine concentration in different brain structures such as olfactory bulb, striatum, and prefrontal cortex, but not in the hippocampus. These findings reinforce the notion that the olfactory system represents a particularly sensitive route for the transport of neurotoxins into the central nervous system that may be related to the etiology of PD. These results also provide new insights in experimental models of PD, indicating that the i.n. administration of MPTP represents a valuable mouse model for the study of the early stages of PD and for testing new therapeutic strategies to restore sensorial and cognitive processes in PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decrement in dopamine levels exceeds the loss of dopaminergic neurons in Parkinson’s disease (PD) patients and experimental models of PD. This discrepancy is poorly understood and may represent an important event in the pathogenesis of PD. Herein, we report that the rate-limiting enzyme in dopamine synthesis, tyrosine hydroxylase (TH), is a selective target for nitration following exposure of PC12 cells to either peroxynitrite or 1-methyl-4-phenylpyridiniun ion (MPP+). Nitration of TH also occurs in mouse striatum after MPTP administration. Nitration of tyrosine residues in TH results in loss of enzymatic activity. In the mouse striatum, tyrosine nitration-mediated loss in TH activity parallels the decline in dopamine levels whereas the levels of TH protein remain unchanged for the first 6 hr post MPTP injection. Striatal TH was not nitrated in mice overexpressing copper/zinc superoxide dismutase after MPTP administration, supporting a critical role for superoxide in TH tyrosine nitration. These results indicate that tyrosine nitration-induced TH inactivation and consequently dopamine synthesis failure, represents an early and thus far unidentified biochemical event in MPTP neurotoxic process. The resemblance of the MPTP model with PD suggests that a similar phenomenon may occur in PD, influencing the severity of parkisonian symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages dopaminergic neurons in the substantia nigra pars compacta (SNpc) as seen in Parkinson's disease. Here, we show that the pro-apoptotic protein Bax is highly expressed in the SNpc and that its ablation attenuates SNpc developmental neuronal apoptosis. In adult mice, there is an up-regulation of Bax in the SNpc after MPTP administration and a decrease in Bcl-2. These changes parallel MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking Bax are significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that Bax plays a critical role in the MPTP neurotoxic process and suggests that targeting Bax may provide protective benefit in the treatment of Parkinson's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic pathway damage similar to that observed in Parkinson disease (PD). To study the role of NO radical in MPTP-induced neurotoxicity, we injected MPTP into mice in which nitric oxide synthase (NOS) was inhibited by 7-nitroindazole (7-NI) in a time- and dose-dependent fashion. 7-NI dramatically protected MPTP-injected mice against indices of severe injury to the nigrostriatal dopaminergic pathway, including reduction in striatal dopamine contents, decreases in numbers of nigral tyrosine hydroxylase-positive neurons, and numerous silver-stained degenerating nigral neurons. The resistance of 7-NI-injected mice to MPTP is not due to alterations in striatal pharmacokinetics or content of 1-methyl-4-phenylpyridinium ion (MPP+), the active metabolite of MPTP. To study specifically the role of neuronal NOS (nNOS), MPTP was administered to mutant mice lacking the nNOS gene. Mutant mice are significantly more resistant to MPTP-induced neurotoxicity compared with wild-type littermates. These results indicate that neuronally derived NO mediates, in part, MPTP-induced neurotoxicity. The similarity between the MPTP model and PD raises the possibility that NO may play a significant role in the etiology of PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The loss of dopamine in idiopathic or animal models of Parkinson's disease induces synchronized low-frequency oscillatory burst-firing in subthalamic nucleus neurones. We sought to establish whether these firing patterns observed in vivo were preserved in slices taken from dopamine-depleted animals, thus establishing a role for the isolated subthalamic-globus pallidus complex in generating the pathological activity. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) showed significant reductions of over 90% in levels of dopamine as measured in striatum by high pressure liquid chromatography. Likewise, significant reductions in tyrosine hydroxylase immunostaining within the striatum (>90%) and tyrosine hydroxylase positive cell numbers (65%) in substantia nigra were observed. Compared with slices from intact mice, neurones in slices from MPTP-lesioned mice fired significantly more slowly (mean rate of 4.2 Hz, cf. 7.2 Hz in control) and more irregularly (mean coefficient of variation of inter-spike interval of 94.4%, cf. 37.9% in control). Application of ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonopentanoic acid (AP5) and the GABAA receptor antagonist picrotoxin caused no change in firing pattern. Bath application of dopamine significantly increased cell firing rate and regularized the pattern of activity in cells from slices from both MPTP-treated and control animals. Although the absolute change was more modest in control slices, the maximum dopamine effect in the two groups was comparable. Indeed, when taking into account the basal firing rate, no differences in the sensitivity to dopamine were observed between these two cohorts. Furthermore, pairs of subthalamic nucleus cells showed no correlated activity in slices from either control (21 pairs) or MPTP-treated animals (20 pairs). These results indicate that the isolated but interconnected subthalamic-globus pallidus network is not itself sufficient to generate the aberrant firing patterns in dopamine-depleted animals. More likely, inputs from other regions, such as the cortex, are needed to generate pathological oscillatory activity. © 2006 IBRO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-3-(1-Methylindol-3-yl)propan-N-(2,2,2-trichloroethoxysulfonyl)guanidine was synthesized from 3-formyl-1-methylindole in six steps and subjected to conditions intended to convert the side-chain into a 2-iminotetrahydropyrimidine- containing product, of relevance to a possible synthesis of the aplicyanins. An alternative reaction course was observed, resulting in the formation of a new tetracyclic system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-3-(1-Methylindol-3-yl)propan-N-(2,2,2-trichloroethoxysulfonyl)guanidine was synthesized from 3-formyl-1-methylindole in six steps and subjected to conditions intended to convert the side-chain into a 2-iminotetrahydropyrimidine- containing product, of relevance to a possible synthesis of the aplicyanins. An alternative reaction course was observed, resulting in the formation of a new tetracyclic system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ring-contractive and highly diastereoselective [2,3]-sigmatropic rearrangement occurs when N-methyl-1,2,3,6-tetrahydropyridine is treated with sub-stoichiometric amounts of copper or rhodium salts, in the presence of ethyl diazoacetate, giving ethyl cis-N-methyl-3-ethenyl proline (4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motor impairments of Parkinson`s disease (PD) appear only after the loss of more than 70% of the DAergic neurons of the substantia nigra pars compacta (SNc). An earlier phase of this disease can be modeled in rats that received a unilateral infusion of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) into the SNc. Though these animals do not present gross motor impairments, they rotate towards the lesioned side when challenged with DAergic drugs, like amphetamine and apomorphine. The present study aimed to test whether these effects occur because the drugs disrupt compensatory mechanisms that keep extracellular levels of dopamine in the striatum (DA(E)) unchanged. This hypothesis was tested by an in vivo microdialysis study in awake rats with two probes implanted in the right and left striatum. Undrugged rats did not present turning behaviour and their basal DA(E) did not differ between the lesioned and sham-lesioned sides. However, after apomorphine treatment, DA(E) decreased in both sides, but to a larger extent in the lesioned side at the time the animals started ipsiversive turning behaviour. After amphetamine challenge, DA(E) increased in both sides, becoming significantly higher in the non-lesioned side at the time the animals started ipsiversive turning behaviour. These results are in agreement with the hypothesis that absence of gross motor impairments in this rat model of early phase PD depends on maintenance of extracellular DA by mechanisms that may be disrupted by events demanding its alteration to higher or lower levels. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the hypothesis that 6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) is neurotoxic. Salsolinol induced a significant time and dose related inhibition of 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazoyl blue (MTT) reduction, and increased lactate dehydrogenase release (LDH) release from human SH-SY5Y neuroblastoma cells, at concentrations within the range of 1-methyl-4-phenylpyridinium (MPP+) cytotoxicity, in vitro. Cytotoxicity was not inhibited by the addition of antioxidants, monoamine oxidase inhibitors or imipramine. In confluent monolayers, salsolinol stimulated catecholamine uptake with EC50 values of 17 muM and 11 muM, for noradrenaline and dopamine, respectively. Conversely, at concentrations above 100 muM, salsolinol inhibited the uptake of noradrenaline and dopamine, with IC50 values of 411 muM and 379 muM, respectively. The inhibition of catecholamine uptake corresponded to the increase displacement of [3H]nisoxetine from the uptake 1 site by salsolinol, as the Ki (353 muM) for displacement was similar to the IC50 (411 and 379 muM) for uptake. Salsolinol stimulated catecholamine uptake does not involve the uptake recognition site, or elevation of cAMP, cGMP, or inhibition of protein kinase C. Salsolinol also inhibited both carbachol (1 mM) and K+ (100 mM, Na+ adjusted) evoked released of noradrenaline from SH-SY5Y cells, with IC50 values of 500 muM and 120 muM, respectively. In conclusion, salsolinol appears to be cytotoxic to SH-SY5Y cells, via a mechanism that does not require uptake 1, bioactivation by monoamine oxidase, or membrane based free radical damage. The effects of salsolinol on catecholamine uptake, and the mechanism of toxicity require further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tetrahydropyrimidinone ring in the title compound, C(20)H(20)N(2)O(2), is in a half-boat conformation with the N-C-N C atom 0.580 (2) angstrom out of the plane defined by the remaining five atoms. In the crystal structure, molecules are connected into centrosymmetric dimers via N-H center dot center dot center dot O interactions. The dimeric aggregates are linked into supramolecular chains along the a axis via C-H center dot center dot center dot pi interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we report an approach to the formation of 5-alkynyl-1,3-dioxin-4-ones using Suzuki-Miyaura cross-coupling reaction of potassium alkynyltrifluoroborate salts with 2,2,6-trimethy1-5-iodo-1,3-dioxin-4-one. The resulting 5-ethynyltrimethylsilyl-1,3-dioxin-4-ones obtained through the Sonogashira reaction were further reacted in a Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition to form functionalized 1,4-disubstituted-1,2,3-triazoles in good yields, using mild conditions and ultrasonic radiation to expedite the reaction. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (> 11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities.