997 resultados para 1-FEH cloning
Resumo:
Variations in the inulin contents have been detected in rhizophores of Vernonia herbacea during the phenological cycle. These variations indicate the occurrence of active inulin synthesis and depolymerization throughout the cycle and a role for this carbohydrate as a reserve compound. 1-Fructan exohydrolase (1-FEH) is the enzyme responsible for inulin depolymerization, and its activity has been detected in rhizophores of sprouting plants. Defoliation and low temperature are enhancer conditions of this 1-FEH activity. The aim of the present work was the cloning of this enzyme. Rhizophores were collected from plants induced to sprout, followed by storage at 5C. A full length 1-FEH cDNA sequence was obtained by PCR and inverse PCR techniques, and expressed in Pichia pastoris. Cold storage enhances FEH gene expression. Vh1-FEH was shown to be a functional 1-FEH, hydrolyzing predominantly -2,1 linkages, sharing high identity with chicory FEH sequences, and its activity was inhibited by 81 in the presence of 10 mM sucrose. In V. herbacea, low temperature and sucrose play a role in the control of fructan degradation. This is the first study concerning the cloning and functional analysis of a 1-FEH cDNA of a native species from the Brazilian Cerrado. Results will contribute to understanding the role of fructans in the establishment of a very successful fructan flora of the Brazilian Cerrado, subjected to water limitation and low temperature during winter.
Resumo:
Rhizophores of Vernonia herbacea, an Asteraceae found in the Brazilian Cerrado, store high amounts of fructans that vary in composition over the phenological cycle. Fructan 1-exohydrolase (1-FEH) activity is detectable during the sprouting phase, mainly in the proximal regions of rhizophores, of plants induced to sprout by defoliation and/or cold storage. We found an increase in 1-FEH gene expression during natural and induced sprouting and further enhancement through low-temperature treatment. Furthermore, a comparative analysis of 1-FEH gene expression in different regions of the rhizophores during the transition from dormancy to sprouting is presented. Transcripts were detected mainly in the proximal region, coinciding with high 1-FEH activity and a high concentration of free fructose. Low temperature promoted the accumulation of fructans of a low degree of polymerization (DP) and enhanced 1-FEH activity and gene expression. It is hypothesized that a set of 1-FEH proteins acts in two different ways during fructan mobilization: (1) by hydrolyzing fructo-oligosaccharides and -polysaccharides in sprouting plants (naturally or induced) for carbon supply and (2) by hydrolyzing preferably fructo-polysaccharides under low temperature to maintain the oligosaccharide pool for plant cold acclimation. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
After introducing the no-cloning theorem and the most common forms of approximate quantum cloning, universal quantum cloning is considered in detail. The connections it has with universal NOT-gate, quantum cryptography and state estimation are presented and briefly discussed. The state estimation connection is used to show that the amount of extractable classical information and total Bloch vector length are conserved in universal quantum cloning. The 1 2 qubit cloner is also shown to obey a complementarity relation between local and nonlocal information. These are interpreted to be a consequence of the conservation of total information in cloning. Finally, the performance of the 1 M cloning network discovered by Bužek, Hillery and Knight is studied in the presence of decoherence using the Barenco et al. approach where random phase fluctuations are attached to 2-qubit gates. The expression for average fidelity is calculated for three cases and it is found to depend on the optimal fidelity and the average of the phase fluctuations in a specific way. It is conjectured to be the form of the average fidelity in the general case. While the cloning network is found to be rather robust, it is nevertheless argued that the scalability of the quantum network implementation is poor by studying the effect of decoherence during the preparation of the initial state of the cloning machine in the 1 ! 2 case and observing that the loss in average fidelity can be large. This affirms the result by Maruyama and Knight, who reached the same conclusion in a slightly different manner.
Resumo:
Bifidobacterium bifidum NCIMB41171 carries four genes encoding different beta-galactosidases. One of them, named bbgIII, consisted of an open reading frame of 1,935 amino acid (a.a.) residues encoding a protein with a multidomain structure, commonly identified on cell wall bound enzymes, having a signal peptide, a membrane anchor, FIVAR domains, immunoglobulin Ig-like and discoidin-like domains. The other three genes, termed bbgI, bbgII and bbgIV, encoded proteins of 1,291, 689 and 1,052 a.a. residues, respectively, which were most probably intracellularly located. Two cases of protein evolution between strains of the same species were identified when the a.a. sequences of the BbgI and BbgIII were compared with homologous proteins from B. bifidum DSM20215. The homologous proteins were found to be differentiated at the C-terminal a.a. part either due to a single nucleotide insertion or to a whole DNA sequence insertion, respectively. The bbgIV gene was located in a gene organisation surrounded by divergently transcribed genes putatively for sugar transport (galactoside-symporter) and gene regulation (LacI-transcriptional regulator), a structure that was found to be highly conserved in B. longum, B. adolescentis and B. infantis, suggesting optimal organisation shared amongst those species.
Resumo:
T cell activation is a complex process involving many steps and the role played by the non-protein-coding RNAs (ncRNAs) in this phenomenon is still unclear. The non-coding T cells transcript (NTT) is differentially expressed during human T cells activation, but its function is unknown. Here, we detected a 426 m NTT transcript by RT-PCR using RNA of human lymphocytes activated with a synthetic peptide of HIV-1. After cloning, the sense and antisense 426 nt NTT transcripts were obtained by in vitro transcription and were sequenced. We found that both transcripts are highly structured and are able to activate PKR. A striking observation was that the antisense 426 nt NTT transcript is significantly more effective in activating PKR than the corresponding sense transcript. The transcription factor NF-kappa B is activated by PKR through phosphorylation and subsequent degradation of its inhibitor I-kappa B beta. We also found that the antisense 426 nt NTT transcript induces more efficiently the degradation Of I-kappa B beta than the sense transcript. Thus, this study suggests that the role played by NTT in the activation of lymphocytes can be mediated by PKR through NF-kappa B activation. However, the physiological significance of the activity of the antisense 426 nt NTT transcript remains unknown. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Fructans of the inulin type are the major reserve carbohydrates in tuberous roots of Viguiera discolor, a perennial herb native to the cerrado. Changes in molecular mass of the polymer, followed by releasing free fructose suggested that hydrolysis could be related to the sprouting of the buds after the dormant period, when aerial parts of the plant are naturally absent. Excision of aerial parts resulted in the increase of fructan 1-exohydrolase (1-FEH) activity in tuberous roots after sprouting. 1-FEH was partially purified from this material by binding to ConA-Sepharose and the highest activity was detected at pH 5.4 and between 20 and 40 °C. Values of Km for V. discolor inulin could not be determined since no saturation was observed up to 10%. The study of the kinetics of the 1-FEH activity showed that it does not follow Michaelis-Menten and apparently presents allosteric behaviour, as data fits in the Hill equation. The 1-FEH from V. discolor is a glycoprotein, more active on low molecular mass fructans than on high molecular mass inulin from the same species.
Resumo:
HTLV-1 is the virus that causes T cell lymphoma/leukemia in adults and a neurological disorder known as HTLV-associated myelopathy or tropical spastic paraparesis. One of the transmission means is through contaminated blood and its byproducts. Because of the risk of HTLV-associated infections, screening for HTLV was introduced for Brazilian blood donors in 1993. Most of the diagnostic kits used in the national blood banks are bought from foreign companies. Brazil does not have the technology to produce this material and there is a need to produce diagnostic systems with national technology. In this study, we show the expression of gp21/HTLV-1 in Escherichia coli and its reactivity towards monoclonal antibodies and the antibodies of infected patients. Expressing these proteins is the first step towards obtaining diagnostic kits with Brazilian biotechnology.
Resumo:
As an adhesion receptor, the β2 integrin lymphocyte function-associated antigen-1 (LFA-1) contributes a strong adhesive force to promote T lymphocyte recirculation and interaction with antigen-presenting cells. As a signaling molecule, LFA-1-mediates transmembrane signaling, which leads to the generation of second messengers and costimulation resulting in T cell activation. We recently have demonstrated that, in costimulatory fashion, LFA-1 activation promotes the induction of T cell membrane urokinase plasminogen activator receptor (uPAR) and that this induced uPAR is functional. To investigate the mechanism(s) of this induction, we used the RNA polymerase II inhibitor 5,6-dichloro-1-β-d-ribobenzimidazole and determined that uPAR mRNA degradation is delayed by LFA-1 activation. Cloning of the wild-type, deleted and mutated 3′-untranslated region of the uPAR cDNA into a serum-inducible rabbit β-globin cDNA reporter construct revealed that the AU-rich elements and, in particular the nonameric UUAUUUAUU sequence, are crucial cis-acting elements in uPAR mRNA degradation. Experiments in which Jurkat T cells were transfected with reporter constructs demonstrated that LFA-1 engagement was able to stabilize the unstable reporter mRNA containing the uPAR 3′-untranslated region. Our study reveals a consequence of adhesion receptor-mediated signaling in T cells, which is potentially important in the regulation of T cell activation, including production of cytokines and expression of proto-oncogenes, many of which are controlled through 3′ AU-rich elements.
Resumo:
One gene locus on chromosome I in Saccharomyces cerevisiae encodes a protein (YAB5_YEAST; accession no. P31378) with local sequence similarity to the DNA repair glycosylase endonuclease III from Escherichia coli. We have analyzed the function of this gene, now assigned NTG1 (endonuclease three-like glycosylase 1), by cloning, mutant analysis, and gene expression in E. coli. Targeted gene disruption of NTG1 produces a mutant that is sensitive to H2O2 and menadione, indicating that NTG1 is required for repair of oxidative DNA damage in vivo. Northern blot analysis and expression studies of a NTG1-lacZ gene fusion showed that NTG1 is induced by cell exposure to different DNA damaging agents, particularly menadione, and hence belongs to the DNA damage-inducible regulon in S. cerevisiae. When expressed in E. coli, the NTG1 gene product cleaves plasmid DNA damaged by osmium tetroxide, thus, indicating specificity for thymine glycols in DNA similarly as is the case for EndoIII. However, NTG1 also releases formamidopyrimidines from DNA with high efficiency and, hence, represents a glycosylase with a novel range of substrate recognition. Sequences similar to NTG1 from other eukaryotes, including Caenorhabditis elegans, Schizosaccharomyces pombe, and mammals, have recently been entered in the GenBank suggesting the universal presence of NTG1-like genes in higher organisms. S. cerevisiae NTG1 does not have the [4Fe-4S] cluster DNA binding domain characteristic of the other members of this family.
Resumo:
Glucagon-like peptide 1 (GLP-1) is a hormone derived from the preproglucagon molecule and is secreted by intestinal L cells. It is the most potent stimulator of glucose-induced insulin secretion and also suppresses in vivo acid secretion by gastric glands. A cDNA for the GLP-1 receptor was isolated by transient expression of a rat pancreatic islet cDNA library into COS cells; this was followed by binding of radiolabeled GLP-1 and screening by photographic emulsion autoradiography. The receptor transfected into COS cells binds GLP-1 with high affinity and is coupled to activation of adenylate cyclase. The receptor binds specifically GLP-1 and does not bind peptides of related structure and similar function, such as glucagon, gastric inhibitory peptide, vasoactive intestinal peptide, or secretin. The receptor is 463 amino acids long and contains seven transmembrane domains. Sequence homology is found only with the receptors for secretin, calcitonin, and parathyroid hormone, which form a newly characterized family of G-coupled receptors.
Resumo:
The human melanoma-associated antigen identified by the monoclonal antibody (mAb) Me14-D12 is a cell surface protein whose expression is induced by interferon-gamma (IFN-gamma). We have recently reported the molecular cloning of a genomic probe specific for the gene and mRNA of this protein. By screening with the genomic probe, we have now isolated a full length 3.0 kb cDNA from a Raji cell line-derived lambda-gt10 library. Sequence analysis of this cDNA showed a 99.8% homology with the intercellular adhesion molecule-1 (ICAM-1). Mouse Ltk- cells stably transfected with the human cDNA clone were found to express the ICAM-1 antigenic determinants detected by mAb Me14-D12 and a reference anti-ICAM-1 mAb, as judged by surface immunofluorescence. Immunoprecipitation of surface-iodinated proteins with mAb Me14-D12 revealed the presence of a 90 kD molecule with identical mobility to ICAM-1. In addition, mAb Me14-D12 could inhibit the phorbolester-stimulated aggregation of U937 cells. The findings show that the human melanoma-associated Me14-D12 antigen is the adhesion molecule ICAM-1.
Resumo:
A complementary DNA for a glucagon-like peptide-1 receptor was isolated from a human pancreatic islet cDNA library. The isolated clone encoded a protein with 90% identity to the rat receptor. In stably transfected fibroblasts, the receptor bound [125I]GLP-1 with high affinity (Kd = 0.5 nM) and was coupled to adenylate cyclase as detected by a GLP-1-dependent increase in cAMP production (EC50 = 93 pM). Two peptides from the venom of the lizard Heloderma suspectum, exendin-4 and exendin-(9-39), displayed similar ligand binding affinities to the human GLP-1 receptor. Whereas exendin-4 acted as an agonist of the receptor, inducing cAMP formation, exendin-(9-39) was an antagonist of the receptor, inhibiting GLP-1-induced cAMP production. Because GLP-1 has been proposed as a potential agent for treatment of NIDDM, our present data will contribute to the characterization of the receptor binding site and the development of new agonists of this receptor.
Resumo:
Regulation of viral genome expression is the result of complex cooperation between viral proteins and host cell factors. We report here the characterization of a novel cellular factor sharing homology with the specific cysteine-rich C-terminal domain of the basic helix-loop-helix repressor protein I-mfa. The synthesis of this new factor, called HIC for Human I-mfa domain-Containing protein, is controlled at the translational level by two different codons, an ATG and an upstream non-ATG translational initiator, allowing the production of two protein isoforms, p32 and p40, respectively. We show that the HIC protein isoforms present different subcellular localizations, p32 being mainly distributed throughout the cytoplasm, whereas p40 is targeted to the nucleolus. Moreover, in trying to understand the function of HIC, we have found that both isoforms stimulate in T-cells the expression of a luciferase reporter gene driven by the human T-cell leukemia virus type I-long terminal repeat in the presence of the viral transactivator Tax. We demonstrate by mutagenesis that the I-mfa-like domain of HIC is involved in this regulation. Finally, we also show that HIC is able to down-regulate the luciferase expression from the human immunodeficiency virus type 1-long terminal repeat induced by the viral transactivator Tat. From these results, we propose that HIC and I-mfa represent two members of a new family of proteins regulating gene expression and characterized by a particular cysteine-rich C-terminal domain.