1000 resultados para 1 Atm
Resumo:
O objetivo foi induzir a multiplicação em explantes de oliveira. Para tanto, foram utilizados segmentos nodais de aproximadamente 2 cm, sem folhas, oriundos de plântulas da variedade Ascolano 315 mantidas in vitro. Os segmentos foram excisados e inoculados em tubos de ensaio contendo 15 mL do meio de cultura Olive Medium (OM) suplementado com 2 g L-1 de carvão ativado, quatro concentrações de 6-benzilaminopurina (BAP) e quatro concentrações de água de coco verde, solidificado com 5,5 g L-1 de ágar e pH ajustado para 5,8 antes da autoclavagem. O meio de cultura foi autoclavado a 121 ºC e 1 atm durante 20 minutos. O delineamento experimental foi inteiramente casualizado, em esquema fatorial 4 x 4. Durante 70 dias, os explantes foram mantidos em sala de crescimento a 25 ± 1ºC, intensidade luminosa de 32 ì mol m-2 s-1 e fotoperíodo de 16 horas. O meio de cultura OM adicionado de 1,0 mg L-1 de BAP e 100 mL L-1 de água de coco proporcionou maior comprimento e biomassa fresca da parte aérea. Maior número de raízes foi obtido com 0,5 mg L-1 de BAP associado a 25 mL L-1 de água de coco. O aumento da concentração de BAP e da dose de água de coco incrementa a biomassa dos calos formados.
Resumo:
Objetivou-se determinar modificações ao meio de cultura Knudson C, acrescendo-o de iodeto de potássio e cloreto de cobalto, para que proporcione maior crescimento em plântulas de Cattleya loddigesii. Plântulas de orquídea, oriundas de sementes germinadas in vitro, com, aproximadamente, 1,0 cm de comprimento, foram inoculadas em tubos de ensaio contendo 15 mL de meio de cultura Knudson C modificado, acrescido de iodeto de potássio (0; 0,45; 0,9 e 1,35 mg.L-1) e cloreto de cobalto (0; 0,015; 0,030 e 0,045 mg.L-1), em todas as combinações possíveis. O meio de cultura teve seu pH ajustado para 5,8 ± 0,1 e foi solidificado com 5 g.L-1 de ágar antes da autoclavagem a 121ºC e 1 atm por 20 minutos. Após a inoculação os tratamentos foram mantidos em sala de crescimento com irradiância de 35 µmol.m-2.s-1, temperatura de 25 ± 1ºC e fotoperíodo de 16 horas. Ao final de 120 dias, foram avaliados número de raízes, comprimento médio de raízes e da parte aérea e massa de matéria fresca de plântulas. O cloreto de cobalto, em sua maior concentração (0,045 mg L-1), adicionado ao meio Knudson C modificado, sem a suplementação de iodeto de potássio, proporciona melhores resultados quanto ao crescimento in vitro das plântulas de Cattleya loddigesii.
Resumo:
The catalytic dehydrogenation of ethylbenzene in presence of steam is the main commercial route to produce styrene. The industrial catalysts are potassium- and chromia-doped hematite which show low surface areas leading to bad performance and short life. In order to develop catalysts with high areas, the effect of beryllium on the textural properties and on the catalytic performance of this iron oxide was studied. The influence of the amount of the dopant, the starting material and the calcination temperature were also studied. In sample preparations, iron and beryllium salts (nitrate or sulfate) were hydrolyzed with ammonia and then calcinated. The experiments followed a factorial design with two variables in two levels (Fe/Be= 3 and 7; calcination temperature= 500 and 700ºC). Solids without any dopant were also prepared. Samples were characterized by elemental analysis, infrared spectroscopy, surface area and porosity measurements, X-ray diffraction, DSC and TG. The catalysts were tested in a microreactor at 524ºC and 1 atm, by using a mole ratio of steam/ ethylbenzene=10. The selectivity was measured by monitoring styrene, benzene and toluene formation. It was found that the effect of beryllium on the characteristics of hematite and on its catalytic performance depends on the starting material and on the amount of dopant. Surface areas increased due to the dopant as well as the nature of the precursor; samples produced by beryllium sulfate showed higher areas. Beryllium-doped solids showed a higher catalytic activity when compared to pure hematite, but no significant influence of the anion of starting material was noted. It can be concluded that beryllium acts as both textural and structural promoter. Samples with Fe/Be= 3, heated at 500ºC, lead to the highest conversion and were the most selective. However, catalysts prepared from beryllium sulfate are the most promising to ethylbenzene dehydrogenation due to their high surface area which could lead to a longer life.
Resumo:
Classical Monte Carlo simulations were carried out on the NPT ensemble at 25°C and 1 atm, aiming to investigate the ability of the TIP4P water model [Jorgensen, Chandrasekhar, Madura, Impey and Klein; J. Chem. Phys., 79 (1983) 926] to reproduce the newest structural picture of liquid water. The results were compared with recent neutron diffraction data [Soper; Bruni and Ricci; J. Chem. Phys., 106 (1997) 247]. The influence of the computational conditions on the thermodynamic and structural results obtained with this model was also analyzed. The findings were compared with the original ones from Jorgensen et al [above-cited reference plus Mol. Phys., 56 (1985) 1381]. It is notice that the thermodynamic results are dependent on the boundary conditions used, whereas the usual radial distribution functions g(O/O(r)) and g(O/H(r)) do not depend on them.
Resumo:
Thermodynamic properties and radial distribution functions for liquid chloroform were calculated using the Monte Carlo method implemented with Metropolis algorithm in the NpT ensemble at 298 K and 1 atm. A five site model was developed to represent the chloroform molecules. A force field composed by Lennard-Jones and Coulomb potential functions was used to calculate the intermolecular energy. The partial charges needed to represent the Coulombic interactions were obtained from quantum chemical ab initio calculations. The Lennard-Jones parameters were adjusted to reproduce experimental values for density and enthalpy of vaporization for pure liquid. All thermodynamic results are in excelent agreement with experimental data. The correlation functions calculated are in good accordance with theoretical results avaliable in the literature. The free energy for solvating one chloroform molecule into its own liquid at 298 K and 1 atm was computed as an additional test of the potential model. The result obtained compares well with the experimental value. The medium effects on cis/trans convertion of a hypotetical solute in water TIP4P and chloroform solvents were also accomplished. The results obtained from this investigation are in agreement with estimates of the continuous theory of solvation.
Resumo:
Para avaliar os efeitos de diferentes tipos de embalagens e ambientes sobre a qualidade de semente de milho doce armazenadas por um período de 18 meses, foram testadas três tipos de embalagens : papel tipo kraft trifoliado, embalagem plástica e acondicionamento a vácuo (0,1 atm). No caso da embalagem de papel, parte das sementes recebeu tratamento com fungicida e inseticidas. Para as sementes acondicionadas em embalagens impermeáveis, foram testados dois níveis de umidade de semente para o armazenamento: 8,0% e 11,0%. As sementes foram armazenadas sob condição de câmara refrigerada ou armazém convencional, tendo sua qualidade avaliada pelos testes de germinação, índice de velocidade de emergência, teste de frio, alterações nos sistemas enzimáticos ADH e MDH e teste de sanidade. Verificou-se que a condição de câmara refrigerada é a mais eficiente para a preservação da qualidade fisiológica de semente de milho doce, condição na qual o acondicionamento de sementes tratadas em embalagem de papel ou plástico foram os métodos mais eficientes para a preservação. Para o armazenamento em condições de ambiente natural, o acondicionamento a vácuo ou em embalagem plástica assegura menores reduções na qualidade fisiológica da semente após 18 meses. A incidência dos fungos Fusarium moniliforme e Aspergillus sp., em câmara refrigerada, e Aspergillus sp., em armazém convencional, é favorecida, independente do tipo de embalagem no armazenamento de semente de milho doce não tratadas com fungicida.
Resumo:
UV absorption spectra of five methyl-substituted hydroxy-cyclohexadienyl radicals, formed by the addition of the hydroxyl radical (OH) to toluene (methyl benzene), o-, m- and p-xylene (1,2-, 1,3- and 1,4-dimethyl benzene, respectively) and mesitylene (1,3,5-trimethylbenzene), have been determined at 298 K, 1 atm pressure (N-2 + O-2), and the corresponding absolute absorption cross-sections measured, using laser flash photolysis and time-resolved UV absorption detection. As observed for other cyclohexadienyl-type radicals, a strong absorption band is present in the 260-340 nm spectral region, with maximum cross-sections in the range (0.9-2.2) x 10(-17) cm(2) molecule(-1). The shape of the band varies significantly from one radical to the next for the series of aromatic precursors investigated. The nature and yields of hydroxylated ring-retaining oxidation products, identified in previous studies of the OH-initiated oxidation of aromatic hydrocarbons, and the results of theoretical density functional theory (DFT) calculations indicate that one or more possible isomers of the various OH-adducts may contribute to the observed spectra. Isomers where the OH-group is ortho- (or both ortho- and ipso-) to a substituent methyl-group are likely to be the most abundant but other isomers may also be formed to a significant extent. Nonetheless, the present study provides absorption spectra of the adduct radicals formed from the gas phase addition of OH to the aromatic hydrocarbons considered, near room temperature and I atm pressure. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity the use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7 Nm(3)/h of hydrogen as feedstock of a 1 kW PEMFC the global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206 degrees C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700 degrees C. However, when the temperature attains 700 degrees C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700 degrees C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1 atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.
Resumo:
Fuel cell as molten carbonate fuel cell (MCFC) operates at high temperatures. Thus, cogeneration processes may be performed, generating heat for its own process or for other purposes of steam generation in the industry. The use of ethanol is one of the best options because this is a renewable and less environmentally offensive fuel, and is cheaper than oil-derived hydrocarbons, as in the case of Brazil. In that country, because of technical, environmental, and economic advantages, the use of ethanol by steam reforming process has been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where the highest volumes of products are produced, making possible a higher production of energy, that is, a more efficient use of resources. To attain this objective, mass and energy balances were performed. Equilibrium constants and advance degrees were calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree (according to Castellan 1986, Fundamentos da Fisica/Quimica, Editora LTC, Rio de Janeiro, p. 529, in Portuguese) is a coefficient that indicates the evolution of a reaction, achieving a maximum value when all the reactants' content is used of reforming increases when the operation temperature also increases and when the operation pressure decreases. However, at atmospheric pressure (1 atm), the advance degree tends to stabilize in temperatures above 700 degrees C; that is, the volume of supplemental production of reforming products is very small with respect to high use of energy resources necessary. The use of unused ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at the same tension, is higher at 700 degrees C than other studied temperatures such as 600 and 650 degrees C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8% and 58.9% in temperatures between 600 and 700 degrees C. The higher calculated current density is 280 mA/cm(2). The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced powers at 190 mA/cm(2) are 99.8, 109.8, and 113.7 mW/cm(2) for 873, 923, and 973 K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describe a process of internal steam reforming of ethanol.
Resumo:
Monte Carlo simulations of water-amides (amide=fonnamide-FOR, methylfonnamide-NMF and dimethylformamide-DMF) solutions have been carried out in the NpT ensemble at 308 K and 1 atm. The structure and excess enthalpy of the mixtures as a function of the composition have been investigated. The TIP4P model was used for simulating water and six-site models previously optimized in this laboratory were used for simulating the liquid amides. The intermolecular interaction energy was calculated using the classical 6-12 Lennard-Jones potential plus a Coulomb term. The interaction energy between solute and solvent has been partitioned what leads to a better understanding of the behavior of the enthalpy of mixture obtained for the three solutions experimentally. Radial distribution functions for the water-amides correlations permit to explore the intermolecular interactions between the molecules. The results show that three, two and one hydrogen bonds between the water and the amide molecules are formed in the FOR, NMF and DMF-water solutions, respectively. These H-bonds are, respectively, stronger for DMF-water, NMF-water and FOR-water. In the NMF-water solution, the interaction between the methyl group of the NMF and the oxygen of the water plays a role in the stabilization of the aqueous solution quite similar to that of an H-bond in the FOR-water solution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Classical Monte Carlo simulations were carried out on the NPT ensemble at 25°C and 1 atm, aiming to investigate the ability of the TIP4P water model [Jorgensen, Chandrasekhar, Madura, Impey and Klein; J. Chem. Phys., 79 (1983) 926] to reproduce the newest structural picture of liquid water. The results were compared with recent neutron diffraction data [Soper; Bruni and Ricci; J. Chem. Phys., 106 (1997) 247]. The influence of the computational conditions on the thermodynamic and structural results obtained with this model was also analyzed. The findings were compared with the original ones from Jorgensen et al [above-cited reference plus Mol. Phys., 56 (1985) 1381]. It is notice that the thermodynamic results are dependent on the boundary conditions used, whereas the usual radial distribution functions g(O/O(r)) and g(O/H(r)) do not depend on them.
Resumo:
Monte Carlo simulations of liquid formamide, N-methylformamide (MF), and N,N-dimethylformamide (DMF) have been performed in the isothermal and isobaric ensemble at 298 K and 1 atm, aiming to investigate the C-H ... O and N-H ... O hydrogen bonds. The interaction energy was calculated using the classical 6-12 Lennard-Jones pairwise potential plus a Coulomb term on a rigid six-site molecular model with the potential parameters being optimized in this work. Theoretical values obtained for heat of vaporization and liquid densities are in good agreement with the experimental data. The radial distribution function [RDF, g(r)] obtained compare well with R-X diffraction data available. The RDF and molecular mechanics (MM2) minimization show that the C-H ... O interaction has a significant role in the structure of the three liquids. These results are supported by ab initio calculations. This Interaction is particularly important in the structure of MF. The intensity of the N-H ... O hydrogen bond is greater in the MF than formamide. This could explain some anomalous properties verified in MF. (C) 1997 John Wiley & Sons, Inc.