967 resultados para 090503 Construction Materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the absence of a benchmarking mechanism specifically designed for local requirements and characteristics, a carbon dioxide footprint assessment and labelling scheme for construction materials is urgently needed to promote carbon dioxide reduction in the construction industry. This paper reports on a recent interview survey of 18 senior industry practitioners in Hong Kong to elicit their knowledge and opinions concerning the potential of such a carbon dioxide labelling scheme. The results of this research indicate the following. A well-designed carbon dioxide label could stimulate demand for low carbon dioxide construction materials. The assessment of carbon dioxide emissions should be extended to different stages of material lifecycles. The benchmarks for low carbon dioxide construction materials should be based on international standards but without sacrificing local integrity. Administration and monitoring of the carbon dioxide labelling scheme could be entrusted to an impartial and independent certification body. The implementation of any carbon dioxide labelling schemes should be on a voluntary basis. Cost, functionality, quality and durability are unlikely to be replaced by environmental considerations in the absence of any compelling incentives or penalties. There are difficulties in developing and operating a suitable scheme, particularly in view of the large data demands involved, reluctance in using low carbon dioxide materials and limited environmental awareness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global climate change is one of the most significant environmental issues that can harm human development. One central issue for the building and construction industry to address global climate change is the development of a credible and meaningful way to measure greenhouse gas (GHG) emissions. While Publicly Available Specification (PAS) 2050, the first international GHG standard, has been proven to be successful in standardizing the quantification process, its contribution to the management of carbon labels for construction materials is limited. With the recent publication of ISO 14067: Greenhouse gases – carbon footprint of products – requirements and guidelines for quantification and communication in May 2013, it is necessary for the building and construction industry to understand the past, present and future of the carbon labelling practices for construction materials. A systematic review shows that international GHG standards have been evolving in terms of providing additional guidance on communication and comparison, as well as less flexibility on the use of carbon labels. At the same time, carbon labelling schemes have been evolving on standardization and benchmarking. In addition, future actions are needed in the aspect of raising consumer awareness, providing benchmarking, ensuring standardization and developing simulation technologies in order for carbon labelling schemes for construction materials to provide credible, accurate and transparent information on GHG emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO2 Measured Label and the Reducing CO2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The primary contribution of this study to the construction industry is to reveal the transparency requirements from international GHG standards and carbon labels for construction products. The findings also offer five key strategies as practical implications for the global community to improve the performance of current carbon labelling schemes on transparency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry accounts for a significant portion of the material consumption of our industrialised societies. That material consumption comes at an environmental cost, and when buildings and infrastructure projects are demolished and discarded, after their useful lifespan, that environmental cost remains largely unrecovered. The expected operational lifespan of modern buildings has become disturbingly short as buildings are replaced for reasons of changing cultural expectations, style, serviceability, locational obsolescence and economic viability. The same buildings however are not always physically or structurally obsolete; the materials and components within them are very often still completely serviceable. While there is some activity in the area of recycling of selected construction materials, such as steel and concrete, this is almost always in the form of down cycling or reprocessing. Very little of this material and component resource is reuse in a way that more effectively captures its potential. One significant impediment to such reuse is that buildings are not designed in a way that facilitates easy recovery of materials and components; they are designed and built for speed of construction and quick economic returns, with little or no consideration of the longer term consequences of their physical matter. This research project explores the potential for the recovery of materials and components if buildings were designed for such future recovery; a strategy of design for disassembly. This is not a new design philosophy; design for disassembly is well understood in product design and industrial design. There are also some architectural examples of design for disassembly; however these are specialist examples and there is no significant attempt to implement the strategy in the main stream construction industry. This paper presents research into the analysis of the embodied energy in buildings, highlighting its significance in comparison with operational energy. Analysis at material, component, and whole-of-building levels shows the potential benefits of strategically designing buildings for future disassembly to recover this embodied energy. Careful consideration at the early design stage can result in the deconstruction of significant portions of buildings and the recovery of their potential through higher order reuse and upcycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An account of fishing vessel construction materials is given, with information on essential features, and a material account. Materials discussed in detail are steel, wood, aluminium, glass reinforced plastic, and ferro-cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Engenharia de Sistemas Ambientais

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a Web-based information system for promoting the cascading utilisation of construction materials in order to mitigate the increasing environmental pressure by the construction industry. First, this paper points out me weaknesses of current waste material exchange systems. Then, a new approach is introduced to reuse demolished materials, by which the utilisation of demolished materials may be ascertained before the demolition is actually produced.. Information technologies, including web-based intelligent and distributed systems, are applied to actua1ise this approach. Finally, the development and implementation of the system is described in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides an analysis of the thermal performance and emissions characteristics of improved biomass stoves constructed using earthen materials. Commonly referred to as mud stoves, this type of improved stove incorporates high clay content soil with an organic binder in the construction of its combustion chamber and body. When large quantities of the mud material are used to construct the stove body, the stove does not offer significant improvements in fuel economy or air quality relative to traditional open fire cooking. This is partly because a significant amount of heat is absorbed by the mass of the stove reducing combustion efficiency and heat transfer to the cook pot. An analysis of the thermal and mechanical properties of stove materials was also performed. A material mixture containing a one‐to‐one ratio by volume of high content clay soil and straw was found to have thermal properties comparable to fired ceramics used in more advanced improved stove designs. Feedback from mud stove users in Mauritania and Mali, West Africa was also collected during implementation. Suggestions for stove design improvements were developed based on this information and the data collected in the performance, emissions, and material properties analysis. Design suggestions include reducing stove height to accommodate user cooking preferences and limiting overall stove mass to reduce heat loss to the stove body.