1000 resultados para 0901 Aerospace Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of game strategies have been developed in past decades and used in the fields of economics, engineering, computer science, and biology due to their efficiency in solving design optimization problems. In addition, research in multiobjective and multidisciplinary design optimization has focused on developing a robust and efficient optimization method so it can produce a set of high quality solutions with less computational time. In this paper, two optimization techniques are considered; the first optimization method uses multifidelity hierarchical Pareto-optimality. The second optimization method uses the combination of game strategies Nash-equilibrium and Pareto-optimality. This paper shows how game strategies can be coupled to multiobjective evolutionary algorithms and robust design techniques to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid and non-Hybrid-Game strategies are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrating Science, Technology, and Engineering in Mathematics authors share ideas and activities that stimulate student interest in the integrated fields of science, technology, engineering, and mathematics (STEM) in K–grade 6 classrooms. This article describes an activity that introduced fourth-grade students to the work of aerospace engineers and to the science, technology, and mathematics principles associated with flight.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During product development, engineering designers raise several information requests that make them search through human and documentary sources. This paper reports research to characterise, in detail, these requests for designers working in a major aerospace engineering company. The research found that at a high level, a distinction can be made between requests to acquire information and to process information. The former are raised to access design and domain information. The latter, instead, are formed to define designs. For researchers, this study extends existing knowledge of information requests by characterising key differences in their nature and explaining how they are used in the design process. For practitioners, these findings can be used as a basis to understand the diverseness of information requests and how to channel efforts to support designers in information seeking. In particular, the research indicates that a strategy to support designers should enable the development of engineering communities that share information effectively and the introduction of techniques that facilitate the documentation of information. © 2012 Springer-Verlag London Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary intention of this paper is to review the current state of the art in engineering cost modelling as applied to aerospace. This is a topic of current interest and in addressing the literature, the presented work also sets out some of the recognised definitions of cost that relate to the engineering domain. The paper does not attempt to address the higher-level financial sector but rather focuses on the costing issues directly relevant to the engineering process, primarily those of design and manufacture. This is of more contemporary interest as there is now a shift towards the analysis of the influence of cost, as defined in more engineering related terms; in an attempt to link into integrated product and process development (IPPD) within a concurrent engineering environment. Consequently, the cost definitions are reviewed in the context of the nature of cost as applicable to the engineering process stages: from bidding through to design, to manufacture, to procurement and ultimately, to operation. The linkage and integration of design and manufacture is addressed in some detail. This leads naturally to the concept of engineers influencing and controlling cost within their own domain rather than trusting this to financers who have little control over the cause of cost. In terms of influence, the engineer creates the potential for cost and in a concurrent environment this requires models that integrate cost into the decision making process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory is developed of an electrostatic probe in a fully-ionized plasma in the presence of a strong magnetic field. The ratio of electron Larmor radius to probe transverse dimension is assumed to be small. Poisson's equation, together with kinetic equations for ions and electrons are considered. An asymptotic perturbation method of multiple scales is used by considering the characteristic lengths appearing in the problem. The leading behavior of the solution is found. The results obtained appear to apply to weaker fields also, agreeing with the solutions known in the limit of no magnetic field. The range of potentials for wich results are presented is limited. The basic effects produced by the field are a depletion of the plasma near the probe and a non-monotonic potential surrounding the probe. The ion saturation current is not changed but changes appear in both the floating potential Vf and the slope of the current-voltage diagram at Vf. The transition region extends beyond the space potential Vs,at wich point the current is largely reduced. The diagram does not have an exponential form in this region as commonly assumed. There exists saturation in electron collection. The extent to which the plasma is disturbed is determined. A cylindrical probe has no solution because of a logarithmic singularity at infinity. Extensions of the theory are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the evolution of a ‘Design - Build-Fly’ (DBF) approach to the delivery and assessment of a Stage Three Aircraft Design module. It focuses on the primary learning outcomes around the design and manufacturing functions associated with the development of a remotely controlled aircraft. The work covers a six year period from 2011 to present mapping the transformation of the module from report based assessment to a more hands on approach resulting in a fully functioning remotely controlled aircraft. Results show that both the staff and student experience improved across key performance metrics including student feedback, learning and competency development. Challenges still remain in methods of placing students within teams and maintaining technical rigour in reporting as students develop vocational skills and more reflective writing styles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A force balance system for measuring lift, thrust and pitching moment has been used to measure the performance of fueled scramjet-powered vehicle in the T4 Shock Tunnel at The University of Queensland. Detailed measurements have been made of the effects of different fuel flow rates corresponding to equivalence ratios between 0.0 and 1.5. For proposed scramjet-powered vehicles, the fore-body of the vehicle acts as part of the inlet to the engine and the aft-body acts as the thrust surface for the engine. This type of engine-integrated design leads to a strong coupling between the performance of the engine and the lift and trim characteristics of the vehicle. The measurements show that the lift force increased by approximately 50% and centre-of-pressure changed by approximately 10% of the chord of the vehicle when the equivalence ratio varied from 0.0 to 1.0. The results demonstrate the importance of engine performance to the overall aerodynamic characteristics of engine-integrated scramjet vehicles and that such characteristics can be measured in a shock tunnel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Game strategies have been developed in past decades and used in the field of economics, engineering, computer science and biology due to their efficiency in solving design optimisation problems. In addition, research on Multi-Objective (MO) and Multidisciplinary Design Optimisation (MDO) has focused on developing robust and efficient optimisation method to produce quality solutions with less computational time. In this paper, a new optimisation method Hybrid Game Strategy for MO problems is introduced and compared to CMA-ES based optimisation approach. Numerical results obtained from both optimisation methods are compared in terms of computational expense and model quality. The benefits of using Game-strategies are demonstrated.