999 resultados para 080204 Mathematical Software
Resumo:
"UIUCDCS-R-74-652"
Resumo:
The developments of models in Earth Sciences, e.g. for earthquake prediction and for the simulation of mantel convection, are fare from being finalized. Therefore there is a need for a modelling environment that allows scientist to implement and test new models in an easy but flexible way. After been verified, the models should be easy to apply within its scope, typically by setting input parameters through a GUI or web services. It should be possible to link certain parameters to external data sources, such as databases and other simulation codes. Moreover, as typically large-scale meshes have to be used to achieve appropriate resolutions, the computational efficiency of the underlying numerical methods is important. Conceptional this leads to a software system with three major layers: the application layer, the mathematical layer, and the numerical algorithm layer. The latter is implemented as a C/C++ library to solve a basic, computational intensive linear problem, such as a linear partial differential equation. The mathematical layer allows the model developer to define his model and to implement high level solution algorithms (e.g. Newton-Raphson scheme, Crank-Nicholson scheme) or choose these algorithms form an algorithm library. The kernels of the model are generic, typically linear, solvers provided through the numerical algorithm layer. Finally, to provide an easy-to-use application environment, a web interface is (semi-automatically) built to edit the XML input file for the modelling code. In the talk, we will discuss the advantages and disadvantages of this concept in more details. We will also present the modelling environment escript which is a prototype implementation toward such a software system in Python (see www.python.org). Key components of escript are the Data class and the PDE class. Objects of the Data class allow generating, holding, accessing, and manipulating data, in such a way that the actual, in the particular context best, representation is transparent to the user. They are also the key to establish connections with external data sources. PDE class objects are describing (linear) partial differential equation objects to be solved by a numerical library. The current implementation of escript has been linked to the finite element code Finley to solve general linear partial differential equations. We will give a few simple examples which will illustrate the usage escript. Moreover, we show the usage of escript together with Finley for the modelling of interacting fault systems and for the simulation of mantel convection.
Resumo:
L’objectiu del present TFM és explorar les possibilitats del programa matemàtic MATLAB i la seva eina Entorn de Disseny d’Interfícies Gràfiques d’Usuari (GUIDE), desenvolupant un programa d’anàlisi d’imatges de provetes metal·logràfiques que es pugui utilitzar per a realitzar pràctiques de laboratori de l’assignatura Tecnologia de Materials de la titulació de Grau en Enginyeria Mecatrònica que s’imparteix a la Universitat de Vic. Les àrees d’interès del treball són la Instrumentació Virtual, la programació MATLAB i les tècniques d’anàlisi d’imatges metal·logràfiques. En la memòria es posa un èmfasi especial en el disseny de la interfície i dels procediments per a efectuar les mesures. El resultat final és un programa que satisfà tots els requeriments que s’havien imposat en la proposta inicial. La interfície del programa és clara i neta, destinant molt espai a la imatge que s’analitza. L’estructura i disposició dels menús i dels comandaments ajuda a que la utilització del programa sigui fàcil i intuïtiva. El programa s’ha estructurat de manera que sigui fàcilment ampliable amb altres rutines de mesura, o amb l’automatització de les rutines existents. Al tractar-se d’un programa que funciona com un instrument de mesura, es dedica un capítol sencer de la memòria a mostrar el procediment de càlcul dels errors que s’ocasionen durant la seva utilització, amb la finalitat de conèixer el seu ordre de magnitud, i de saber-los calcular de nou en cas que variïn les condicions d’utilització. Pel que fa referència a la programació, malgrat que MATLAB no sigui un entorn de programació clàssic, sí que incorpora eines que permeten fer aplicacions no massa complexes, i orientades bàsicament a gràfics o a imatges. L’eina GUIDE simplifica la realització de la interfície d’usuari, malgrat que presenta problemes per tractar dissenys una mica complexos. Per altra banda, el codi generat per GUIDE no és accessible, cosa que no permet modificar manualment la interfície en aquells casos en els que GUIDE té problemes. Malgrat aquests petits problemes, la potència de càlcul de MATLAB compensa sobradament aquestes deficiències.
Resumo:
Työn tavoitteena oli tuottaa rakenteellisen jouston huomioiva monikappaledynmiikan simulointiohjelma Matlab-ympäristöön. Rakenteellinen jousto huomioitiin kelluvan koordinaatiston menetelmällä ja joustavuutta kuvaavat muodot ratkaistiin elementtimenetelmällä. Tehdyn ohjelman avulla voidaan koostaa joustavista kappaleista koostuvia avaruusmekanismeja ja tutkia niiden dynaamista käyttäytymistä. Simulointitulosta verrattiin kaupallisen ohjelmiston tuottamaan tulokseen. Työssä havaittiin, että kelluvan koordinaatiston menetelmä on käyttökelpoinen reaaliaikaiseen simulointiin. Työssä toteutetun ohjelman tulokset vastasivat kaupallisen simulointiohjelman tuloksia.
Resumo:
L’objectiu del present TFM és explorar les possibilitats del programa matemàtic MATLAB i la seva eina Entorn de Disseny d’Interfícies Gràfiques d’Usuari (GUIDE), desenvolupant un programa d’anàlisi d’imatges de provetes metal·logràfiques que es pugui utilitzar per a realitzar pràctiques de laboratori de l’assignatura Tecnologia de Materials de la titulació de Grau en Enginyeria Mecatrònica que s’imparteix a la Universitat de Vic. Les àrees d’interès del treball són la Instrumentació Virtual, la programació MATLAB i les tècniques d’anàlisi d’imatges metal·logràfiques. En la memòria es posa un èmfasi especial en el disseny de la interfície i dels procediments per a efectuar les mesures. El resultat final és un programa que satisfà tots els requeriments que s’havien imposat en la proposta inicial. La interfície del programa és clara i neta, destinant molt espai a la imatge que s’analitza. L’estructura i disposició dels menús i dels comandaments ajuda a que la utilització del programa sigui fàcil i intuïtiva. El programa s’ha estructurat de manera que sigui fàcilment ampliable amb altres rutines de mesura, o amb l’automatització de les rutines existents. Al tractar-se d’un programa que funciona com un instrument de mesura, es dedica un capítol sencer de la memòria a mostrar el procediment de càlcul dels errors que s’ocasionen durant la seva utilització, amb la finalitat de conèixer el seu ordre de magnitud, i de saber-los calcular de nou en cas que variïn les condicions d’utilització. Pel que fa referència a la programació, malgrat que MATLAB no sigui un entorn de programació clàssic, sí que incorpora eines que permeten fer aplicacions no massa complexes, i orientades bàsicament a gràfics o a imatges. L’eina GUIDE simplifica la realització de la interfície d’usuari, malgrat que presenta problemes per tractar dissenys una mica complexos. Per altra banda, el codi generat per GUIDE no és accessible, cosa que no permet modificar manualment la interfície en aquells casos en els que GUIDE té problemes. Malgrat aquests petits problemes, la potència de càlcul de MATLAB compensa sobradament aquestes deficiències.
Resumo:
Diplomityö tehtiin Wello Oy:n toimeksiannosta. Wello Oy on vesi- ja tuulivoimaratkaisuihin keskittynyt yritys, joka kehittää aaltovoimalaitekonseptia. Työssä selvitettiin aaltovoimaan liittyviä ilmiöitä ja aaltovoimalaitteen mekaanista konseptia ja tehtiin arvio niiden tehokkuudesta. Työssä käytettiin kaupallisia simulointityökaluja kuten monikappaledynamiikan simulointiohjelmaa MSC.ADAMS R3:a ja yleistä matematiikka ohjelmaa Matlab Simulink:ia. Simulointimallia käytettiin arvioimaan laitteen yleistä käyttäytymistä. Lisäksi laitteen analyyttisiä malleja käytettiin laitteen toimintaperiaatteen selvitykseen. Simulointia käytettiin kelluvan laitteen mekanismin tutkimukseen. Tuloksiin pohjautuen laitteelle määriteltiin teoreettiset maksimiteho rajat ja rajoitteet, jotka vaikuttavat laitteen tehokkuuteen.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
Once defined the relationship between the Starter Motor components and their functions, it is possible to develop a mathematical model capable to predict the Starter behavior during operation. One important aspect is the engagement system behavior. The development of a mathematical tool capable of predicting it is a valuable step in order to reduce the design time, cost and engineering efforts. A mathematical model, represented by differential equations, can be developed using physics laws, evaluating force balance and energy flow through the systems degrees of freedom. Another important physical aspect to be considered in this modeling is the impact conditions (particularly on the pinion and ring-gear contact). This work is a report of those equations application on available mathematical software and the resolution of those equations by Runge-Kutta's numerical integration method, in order to build an accessible engineering tool. Copyright © 2011 SAE International.
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE