913 resultados para 070306 Crop and Pasture Nutrition
Resumo:
Direct nitrogen (N) losses from pastures contribute to the poor nitrogen use efficiency of the dairy industry, though the exact fate of applied N and the processes involved are largely unknown. Nitrification inhibitors such as DMPP can potentially increase fertilizer N use efficiency (NUE), though few studies globally have examined the effectiveness of DMPP coated urea in pastures. This study quantified the NUE of DMPP combined with reduced application rates, and the effect on N dynamics and plant–soil interactions over an annual ryegrass/kikuyu rotation in Queensland, Australia. Labeled 15N urea and DMPP was applied over 7 winter applications at standard farmer (45 kg N ha−1) and half (23 kg N ha−1) rates. Fertilizer recoveries and NUE were calculated over 13 harvests, and the contribution of fertilizer and soil N estimated. Up to 85% of the annual N harvested was from soil organic matter. DMPP at the lower rate increased annual yields by 31% compared to the equivalent urea treatment with no difference to the high N rates. Almost 40% of the N added at the conventional fertilizer application rate as urea was lost to the environment; 80 kg N ha−1 higher than the low DMPP. Combining the nitrification inhibitor DMPP with reduced fertilizer application rates shows substantial potential to reduce N losses to the environment while sustaining productivity in subtropical dairy pastures.
Resumo:
Caption title.
Resumo:
MesoLite, a zeolite material manufactured by NanoChem Holdings Pty Ltd is made by caustic reaction of kaolin at temperatures between 80-95°C. This material has a moderate surface area (9~12 m2/g) and very high cation exchange capacity (500meq/100g). To measure the availability of K in K-MesoLite to plants, wheat was grown with K-MesoLite or a soluble fertiliser (e.g. KCl) in non-leached pots in a glasshouse. The weights and elemental compositions of the plants were compared after four weeks growth. Plants grown with K-MesoLite were slightly larger than those grown with KCl. The elemental compositions of the plants were similar except for Si, which was significantly higher in the plants grown with K-MesoLite than in those fertilised with KCl. K from K-MesoLite is readily available to plants.
Resumo:
Water and ammonium retention by sandy soils may be low and result in leaching of applied fertiliser. To increase water and nutrient retention, zeolite is sometimes applied as a soil ameliorant for high value land uses including turf and horticulture. We have used a new modified kaolin material (MesoLite) as a soil amendment to test the efficiency of NH4+ retention and compared the results with natural zeolite. MesoLite is made by caustic reaction of kaolin at temperature between 80-95°C; although it has a moderate surface area, its cation exchange capacity is very high;(SA=13m2/g,CEC=500meq/100g). A 13cm tall sand column filled with ~450g of sandy soil homogeneously mixed with 1, 2, 4, and 8g of MesoLite or natural zeolite per 1kg of soil was prepared. After saturation with local bore water, concentrated ammonium sulfate solution was injected at the base. Then, bore water was passed from bottom to top through the column at amounts up to 6 pore volumes and at a constant flow rate of 10ml/min using a peristaltic pump. Concentrations of leached NH4+ were determined using an AutoAnalyser. The concentration of NH4+ leached from the column with 0.4% MesoLite was greatly (90%) reduced relative to unamended soil. Under these conditions NH4+ retention by the soil-MesoLite mixture was 11.5 times more efficient than the equivalent soil-natural zeolite mixture. Glasshouse experiments conducted in a separate study show that NH4+ adsorbed by MesoLite is available to plants.
Resumo:
The DAYCENT biogeochemical model was used to investigate how the use of fertilizers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and {N2O} emissions. The model was validated using comprehensive multi-seasonal, high-frequency dataset from two field investigations conducted on an Oxisol, which is the most common soil type in subtropical regions. Different N fertilizer rates were tested for each N management strategy and simulated under varying weather conditions. DAYCENT was able to reliably predict soil N dynamics, seasonal {N2O} emissions and crop production, although some discrepancies were observed in the treatments with low or no added N inputs and in the simulation of daily {N2O} fluxes. Simulations highlighted that the high clay content and the relatively low C levels of the Oxisol analyzed in this study limit the chances for significant amounts of N to be lost via deep leaching or denitrification. The application of urea coated with a nitrification inhibitor was the most effective strategy to minimize {N2O} emissions. This strategy however did not increase yields since the nitrification inhibitor did not substantially decrease overall N losses compared to conventional urea. Simulations indicated that replacing part of crop N requirements with N mineralized by legume residues is the most effective strategy to reduce {N2O} emissions and support cereal productivity. The results of this study show that legumes have significant potential to enhance the sustainable and profitable intensification of subtropical cereal cropping systems in Oxisols.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.
Resumo:
O presente estudo quantificou os efeitos da fertilização mineral e da cobertura do solo com uma leguminosa (Pueraria phaseoloides (Roxb) Benth.) sobre a dinâmica de nutrientes no sistema solo-planta.
Resumo:
Projected increases in atmospheric carbon dioxide concentration ([CO2]) and air temperature associated with future climate change are expected to affect crop development, crop yield, and, consequently, global food supplies. They are also likely to change agricultural production practices, especially those related to agricultural water management and sowing date. The magnitude of these changes and their implications to local production systems are mostly unknown. The objectives of this study were to: (i) simulate the effect of projected climate change on spring wheat (Triticum aestivum L. cv. Lang) yield and water use for the subtropical environment of the Darling Downs, Queensland, Australia; and (ii) investigate the impact of changing sowing date, as an adaptation strategy to future climate change scenarios, on wheat yield and water use. The multimodel climate projections from the IPCC Coupled Model Intercomparison Project (CMIP3) for the period 2030–2070 were used in this study. Climate scenarios included combinations of four changes in air temperature (08C, 18C, 28C, and 38C), three [CO2] levels (380 ppm, 500 ppm, and 600 ppm), and three changes in rainfall (–30%, 0%, and +20%), which were superimposed on observed station data. Crop management scenarios included a combination of six sowing dates (1 May, 10 May, 20 May, 1 June, 10 June, and 20 June) and three irrigation regimes (no irrigation (NI), deficit irrigation (DI), and full irrigation (FI)). Simulations were performed with the model DSSAT4.5, using 50 years of daily weather data.Wefound that: (1) grain yield and water-use efficiency (yield/evapotranspiration) increased linearly with [CO2]; (2) increases in [CO2] had minimal impact on evapotranspiration; (3) yield increased with increasing temperature for the irrigated scenarios (DI and FI), but decreased for the NI scenario; (4) yield increased with earlier sowing dates; and (5) changes in rainfall had a small impact on yield for DI and FI, but a high impact for the NI scenario.
Resumo:
"The extended drought periods in each degradation episode have provided a test of the capacity of grazing systems (i.e. land, plants, animals, humans and social structure) to handle stress. Evidence that degradation was already occurring was identified prior to the extended drought sequences. The sequence of dry years, ranging from two to eight years, exposed and/or amplified the degradation processes. The unequivocal evidence was provided by: (a) the physical 'horror' of bare landscapes, erosion scalds and gullies and dust storms; (b) the biological devastation of woody weeds and animal suffering/deaths or forced sales, and; (c) the financial and emotional plight of graziers and their families due to reduced production in some cases leading to abandonment of properties or, sadly, deaths (e.g. McDonald 1991, Ker Conway 1989)."--Publisher website
Resumo:
This project aims to develop integrated irrigation and nutrition management strategies under limited water for irrigators currently investing in overhead irrigation systems (CPLM) to minimize the learning lag in their use and optimize crop and economic performance.
Resumo:
Exposure to hot environments affects milk yield (MY) and milk composition of pasture and feed-pad fed dairy cows in subtropical regions. This study was undertaken during summer to compare MY and physiology of cows exposed to six heat-load management treatments. Seventy-eight Holstein-Friesian cows were blocked by season of calving, parity, milk yield, BW, and milk protein (%) and milk fat (%) measured in 2 weeks prior to the start of the study. Within blocks, cows were randomly allocated to one of the following treatments: open-sided iron roofed day pen adjacent to dairy (CID) + sprinklers (SP); CID only; non-shaded pen adjacent to dairy + SP (NSD + SP); open-sided shade cloth roofed day pen adjacent to dairy (SCD); NSD + sprinkler (sprinkler on for 45 min at 1100 h if mean respiration rate >80 breaths per minute (NSD + WSP)); open-sided shade cloth roofed structure over feed bunk in paddock + 1 km walk to and from the dairy (SCP + WLK). Sprinklers for CID + SP and NSD + SP cycled 2 min on, 12 min off when ambient temperature >26°C. The highest milk yields were in the CID + SP and CID treatments (23.9 L cow−1 day−1), intermediate for NSD + SP, SCD and SCP + WLK (22.4 L cow−1 day−1), and lowest for NSD + WSP (21.3 L cow−1 day−1) (P < 0.05). The highest (P < 0.05) feed intakes occurred in the CID + SP and CID treatments while intake was lowest (P < 0.05) for NSD + WSP and SCP + WLK. Weather data were collected on site at 10-min intervals, and from these, THI was calculated. Nonlinear regression modelling of MY × THI and heat-load management treatment demonstrated that cows in CID + SP showed no decline in MY out to a THI break point value of 83.2, whereas the pooled MY of the other treatments declined when THI >80.7. A combination of iron roof shade plus water sprinkling throughout the day provided the most effective control of heat load.
Resumo:
A better understanding of the differential growth of upland rice (Oryza sativa L.) cultivars with increasing soil S availability could help improve rice yield under upland conditions. The objective of this study was to evaluate root and shoot growth and nutrition of upland traditional and modern rice cultivars as affected by S availability. The experimental design was completely randomized in a 3 (rates of S) × 3 (cultivars) factorial with four replications. Low availability of S in the soil reduces root and shoot development and the efficiency of N, P, and S uptake, as well as the concentration and content of these nutrients in rice cultivars. At 0 mg dm-3 of S, rice cultivars prioritize root growth over shoots, and the traditional cultivar does so with greater intensity. Our results suggested that more development of traditional cultivars under low S availability facilitates its adaptation in soils under this condition. On the other hand, the intermediate and modern cultivars are more responsive to S fertilization. Moreover, S fertilization allows significant increases in upland rice growth and must be considered in cropping systems aiming for high yields. © Soil Science Society of America.
Resumo:
Edaphic factors affect the quality of onions (Allium cepa). Two experiments were carried out in the field and glasshouse to investigate the effects of N (field: 0, 120 kg ha(-1); glasshouse: 0, 108 kg ha(-1)), S (field: 0, 20 kg ha(-1); glasshouse: 0, 4.35 kg ha(-1)) and soil type (clay, sandy loam) on onion quality. A conducting polymer sensor electronic nose (E-nose) was used to classify onion headspace volatiles. Relative changes in the E-nose sensor resistance ratio (%dR/R) were reduced following N and S fertilisation. A 2D Principal Component Analysis (PCA) of the E-nose data sets accounted for c. 100% of the variations in onion headspace volatiles in both experiments. For the field experiment, E-nose data set clusters for headspace volatiles for no N-added onions overlapped (D-2 = 1.0) irrespective of S treatment. Headspace volatiles of N-fertilised onions for the glasshouse sandy loam also overlapped (D-2 = 1.1) irrespective of S treatment as compared with distinct separations among clusters for the clay soil. N fertilisation significantly (P < 0.01) reduced onion bulb pyruvic acid concentration (flavour) in both experiments. S fertilisation increased pyruvic acid concentration significantly (P < 0.01) in the glasshouse experiment, especially for the clay soil, but had no effect on pyruvic acid concentration in the field. N and S fertilisation significantly (P < 0.01) increased lachrymatory potency (pungency), but reduced total soluble solids (TSS) content in the field experiment. In the glasshouse experiment, N and S had no effect on TSS. TSS content was increased on the clay by 1.2-fold as compared with the sandy loam. Onion tissue N:water-soluble SO42- ratios of between five and eight were associated with greater %dR/R and pyruvic acid concentration values. N did not affect inner bulb tissue microbial load. In contrast, S fertilisation reduced inner bulb tissue microbial load by 80% in the field experiment and between 27% (sandy loam) and 92% (clay) in the glasshouse experiment. Overall, onion bulb quality discriminated by the E-nose responded to N, S and soil type treatments, and reflected their interactions. However, the conventional analytical and sensory measures of onion quality did not correlate with %dR/R.