972 resultados para 060806 Animal Physiological Ecology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vampire bats, Desmodus rotundus, must maximize their feeding cycle of one blood meal per day by being efficient in the stalking and acquisition of their food. Riskin and Hermanson documented the running gait of the common vampire bat and observed they were efficient at running speeds, using longer stride lengths and thus decreased stride frequency. We obtained preliminary data on gait maintained for up to 10 minutes on a moving treadmill belt at speeds ranging from 0.23 to 0.74 m/s, which spanned a range from walking to running gaits. Bats tended to transition between gaits at about 0.40 m/s. Fourteen bats were studied and included four that were able to walk or run for 10 minutes. There was no significant change in either stride duration or frequency associated with an increase in speed. We estimated O2 consumption and CO2 production both before and 5 minutes after exercise, and found that O2 consumption increased 1 minute and 5 minutes after exercise. CO2 levels increased significantly 1 minute after exercise, but tended back towards pre-exercise level 5 minutes after exercise. Two bats were tested for blood O2, CO2 and pH levels. Interestingly, pH levels fell from 7.3 to about 7.0, indicating lactate accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expensive, extensive and apparently lethal control measures have been applied against many species of pest vertebrates and invertebrates for decades. In spite of this, few pests have been annihilated, and in many cases the stated goals have become progressively more modest, so that now we speak of saving foliage or a crop, rather than extermination. It is of interest to examine the reasons why animals are so difficult to exterminate, because this matter, of course, has implications for the type of control policy we pursue in the future. Also, it has implications for the problem of evaluating comparatively various resource management strategies. There are many biological mechanisms which could, in principle, enhance the performance of an animal population after control measures have been applied against it. These are of four main types: genetic, physiological, populationa1, and environmental. We are all familiar with the fact that in applying a control measure, we are, from the pest's point of view, applying intense selection pressure in favor of those individuals that may be preadapted to withstand the type of control being used. The well-known book by Brown (1958) documents, for invertebrates, a tremendous number of such cases. Presumably, vertebrates can show the same responses. Not quite so familiar is the evidence that sub-lethal doses of a lethal chemical may have a physiologically stimulating effect on population performance of the few individuals that happen to survive (Kuenen, 1958). With further research, we may find that this phenomenon occurs throughout the animal kingdom. Still less widely recognized is the fact that pest control elicits a populational homeostatic mechanism, as well as genetic and physiological homeostatic mechanisms. Many ecologists, such as Odum and Allee (1950, Slobodkin (1955), Klomp (1962) and the present author (1961, 1963) have pointed out that the curve for generation survival, or the curve for trend index as a function of last generations density is of great importance in population dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loxodes faces special problems in living close to the oxic-anoxic boundary. In tightly-stratified ponds like Priest Pot its optimum environment may be quite narrow and it can be displaced by the slightest turbulence. Loxodes cannot sense an O sub(2) gradient directly but its ability to perceive gravity allows it to make relatively long vertical migrations. It is also sensitive to light and oxygen and it uses these environmental cues to modulate the parameters of its random motility: in the dark, it aggregates at a low O sub(2) tension and in bright light it aggregates in anoxic water. The oxic-anoxic boundary is also a zone where O sub(2) may be a scarce and transient resource, but Loxodes) can switch to nitrate respiration and exploit the pool of nitrate that often exists close to the base of the oxycline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Juvenile chinook salmon, Oncorhynchus tshawytscha, from natal streams in California’s Central Valley demonstrated little estuarine dependency but grew rapidly once in coastal waters. We collected juvenile chinook salmon at locations spanning the San Francisco Estuary from the western side of the freshwater delta—at the confluence of the Sacramento and San Joaquin Rivers—to the estuary exit at the Golden Gate and in the coastal waters of the Gulf of the Farallones. Juveniles spent about 40 d migrating through the estuary at an estimated rate of 1.6 km/d or faster during their migration season (May and June 1997) toward the ocean. Mean growth in length (0.18 mm/d) and weight (0.02 g/d) was insignificant in young chinook salmon while in the estuary, but estimated daily growth of 0.6 mm/d and 0.5 g/d in the ocean was rapid (P≤0.001). Condition (K factor) declined in the estuary, but improved markedly in ocean fish. Total body protein, total lipid, triacylglycerols (TAG), polar lipids, cholesterol, and nonesterified fatty acids concentrations did not change in juveniles in the estuary, but total lipid and TAG were depleted in ocean juveniles. As young chinook migrated from freshwater to the ocean, their prey changed progressively in importance from invertebrates to fish larvae. Once in coastal waters, juvenile salmon appear to employ a strategy of rapid growth at the expense of energy reserves to increase survival potential. In 1997, environmental conditions did not impede development: freshwater discharge was above average and water temperatures were only slightly elevated, within the species’ tolerance. Data suggest that chinook salmon from California’s Central Valley have evolved a strong ecological propensity for a ocean-type life history. But unlike populations in the Pacific Northwest, they show little estuarine dependency and proceed to the ocean to benefit from the upwelling-driven, biologically productive coastal waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal cycles in the rates of oxygen consumption, feeding, absorption efficiency and ammonia-nitrogen excretion in two populations of Mytilus edulis were measured in the field under ambient conditions and related to body size, the gametogenic cycle, the concentration of suspended particulate matter in the water and temperature. Relationships between the various physiological variables are also considered and protein and energy budgets estimated. Both the “scope for growth” and the “relative maintenance cost” were seasonally variable, demonstrating a minimum capacity for growth in the winter and a maximum capacity in the summer. In one population subjected to abnormally high temperatures in the winter the scope for growth was negative for four or five months between January and May. These population differences are discussed and the potential for using physiological integrations in intra-specific comparisons of fitness is identified.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike exercising mammals, migratory birds fuel very high intensity exercise (e.g., flight) with fatty acids delivered from the adipose tissue to the working muscles by the circulatory system. Given the primary importance of fatty acids for fueling intense exercise, we discuss the likely limiting steps in lipid transport and oxidation for exercising birds and the ecological factors that affect the quality and quantity of fat stored in wild birds. Most stored lipids in migratory birds are comprised of three fatty acids (16:0, 18:1 and 18:2) even though migratory birds have diverse food habits. Diet selection and selective metabolism of lipids play important roles in determining the fatty acid composition of birds which, in turn, affects energetic performance during intense exercise. As such, migratory birds offer an intriguing model for studying the implications of lipid metabolism and obesity on exercise performance. We conclude with a discussion of the energetic costs of migratory flight and stopover in birds, and its implications for bird migration strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluctuations of food availability, habitat quality, and environmental conditions throughout the year have been implicated in the breeding success and survival of migratory birds. Levels of circulating corticosterone, the hormone involved in energy balance and the stress response in birds, are also affected by fluctuations in these variables, and also play a role in self-maintenance and survival. In addition to changes in behaviors and resource allocation, the metabolic effects of corticosterone increase the amount of free radicals in the body, which can cause oxidative stress and damage lipids and DNA. In this thesis, I assessed if diet and physiology during the breeding and non-breeding seasons contributed to the reproductive success, survival, and oxidative stress of a long-lived migratory seabird, Leach’s storm-petrel (Oceanodroma leucorhoa). I tested the hypotheses that 1.) diet and physiology throughout the breeding and non-breeding seasons predict reproductive effort; and 2.) corticosterone affects telomere length, a measure of oxidative damage. Through analyses of stable isotopes, corticosterone, and antioxidant capacity, I found that although there was variation in these measures of diet and physiology within the population, none of these factors during the breeding or non-breeding seasons correlated with reproductive effort or success. I also found that feather and plasma corticosterone did not predict telomere length. The life history strategies of Leach’s storm-petrels appear to be complex, and many factors likely contribute to self-maintenance and the decision to breed. Long-term monitoring of these variables may help identify relationships between trends in oceanographic variables during both the breeding and non-breeding seasons with reproductive effort and success, and survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary 1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests. Keywords: bioenergetics; energy budget; individual-based models; population dynamics.