1000 resultados para 029999 Physical Sciences not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air pollution levels were monitored continuously over a period of 4 weeks at four sampling sites along a busy urban corridor in Brisbane. The selected sites were representative of industrial and residential types of urban environment affected by vehicular traffic emissions. The concentration levels of submicrometer particle number, PM2.5, PM10, CO, and NOx were measured 5-10 meters from the road. Meteorological parameters and traffic flow rates were also monitored. The data were analysed in terms of the relationship between monitored pollutants and existing ambient air quality standards. The results indicate that the concentration levels of all pollutants exceeded the ambient air background levels, in certain cases by up to an order of magnitude. While the 24-hr average concentration levels did not exceed the standard, estimates for the annual averages were close to, or even higher than the annual standard levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify indoor exposure to submicrometer particles and PM2.5 for the inhabitants of 14 houses. Particle concentrations were measured simultaneously for more than 48 hours in the kitchens of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak). The occupants of the houses were asked to fill in a diary, noting the time and duration of any activity occurring throughout the house during measurement, as well as their presence or absence from home. From the time series concentration data and the information about indoor activities, exposure to the inhabitants of the houses was calculated for the entire time they spent at home as well as during indoor activities resulting in particle generation. The results show that the highest median concentration level occurred during cooking periods for both particle number concentration (47.5´103 particles cm-3) and PM2.5 concentration (13.4 mg m-3). The highest residential exposure period was the sleeping period for both particle number exposure (31%) and PM2.5 exposure (45.6%). The percentage of the average residential particle exposure level in total 24h particle exposure level was approximating 70% for both particle number and PM2.5 exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many factors affect the airflow patterns, thermal comfort, contaminant removal efficiency and indoor air quality at individual workstations in office buildings. In this study, four ventilation systems were used in a test chamber designed to represent an area of a typical office building floor and reproduce the real characteristics of a modern office space. Measurements of particle concentration and thermal parameters (temperature and velocity) were carried out for each of the following types of ventilation systems: a) conventional air distribution system with ceiling supply and return; b) conventional air distribution system with ceiling supply and return near the floor; c) underfloor air distribution system; and d) split system. The measurements aimed to analyse the particle removal efficiency in the breathing zone and the impact of particle concentration on an individual at the workstation. The efficiency of the ventilation system was analysed by measuring particle size and concentration, ventilation effectiveness and the Indoor/Outdoor ratio. Each ventilation system showed different airflow patterns and the efficiency of each ventilation system in the removal of the particles in the breathing zone showed no correlation with particle size and the various methods of analyses used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A month-long intensive measurement campaign was conducted in March/April 2007 at Agnes Water, a remote coastal site just south of the Great Barrier Reef on the east coast of Australia. Particle and ion size distributions were continuously measured during the campaign. Coastal nucleation events were observed in clean, marine air masses coming from the south-east on 65% of the days. The events usually began at ~10:00 local time and lasted for 1-4 hrs. They were characterised by the appearance of a nucleation mode with a peak diameter of ~10 nm. The freshly nucleated particles grew within 1-4 hrs up to sizes of 20-50 nm. The events occurred when solar intensity was high (~1000 W m-2) and RH was low (~60%). Interestingly, the events were not related to tide height. The volatile and hygroscopic properties of freshly nucleated particles (17-22.5 nm), simultaneously measured with a volatility-hygroscopicity-tandem differential mobility analyser (VH-TDMA), were used to infer chemical composition. The majority of the volume of these particles was attributed to internally mixed sulphate and organic components. After ruling out coagulation as a source of significant particle growth, we conclude that the condensation of sulphate and/or organic vapours was most likely responsible for driving particle growth during the nucleation events. We cannot make any direct conclusions regarding the chemical species that participated in the initial particle nucleation. However, we suggest that nucleation may have resulted from the photo-oxidation products of unknown sulphur or organic vapours emitted from the waters of Hervey Bay, or from the formation of DMS-derived sulphate clusters over the open ocean that were activated to observable particles by condensable vapours emitted from the nutrient rich waters around Fraser Island or Hervey Bay. Furthermore, a unique and particularly strong nucleation event was observed during northerly wind. The event began early one morning (08:00) and lasted almost the entire day resulting in the production of a large number of ~80 nm particles (average modal concentration during the event was 3200 cm-3). The Great Barrier Reef was the most likely source of precursor vapours responsible for this event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the collection efficiency of ultrafine particles into an impinger fitted with a fritted nozzle tip as a means to increase contact surface area between the aerosol and the liquid. The influence of liquid sampling volume, frit porosity and the nature of the sampling liquid was explored and it was shown that all impact on the collection efficiency of particles smaller than 220 nm. Obtained values for overall collection efficiency were substantially higher (~30–95%) than have been previously reported, mainly due to the high deposition of particles in the fritted nozzle tip, especially in case of finer porosity frits and smaller particles. Values for the capture efficiency of the solvent alone ranged from 20 to 45%, depending on the type and the volume of solvent. Additionally, our results show that airstream dispersion into bubbles improves particle trapping by the liquid and that there is a difference in collection efficiencies based on the nature and volume of the solvent used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2, and NOx were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependant on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16×1015-5.42×1016 kg-1, 0.03-0.72 g.kg-1, and 3.25-37.94 g.kg-1 respectively for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4 to 100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new Expiratory Droplet Investigation System (EDIS) was used to conduct the most comprehensive program of study to date, of the dilution corrected droplet size distributions produced during different respiratory activities.----- Distinct physiological processes were responsible for specific size distribution modes. The majority of particles for all activities were produced in one or more modes, with diameters below 0.8 µm. That mode occurred during all respiratory activities, including normal breathing. A second mode at 1.8 µm was produced during all activities, but at lower concentrations.----- Speech produced particles in modes near 3.5 µm and 5 µm. The modes became most pronounced during continuous vocalization, suggesting that the aerosolization of secretions lubricating the vocal chords is a major source of droplets in terms of number.----- Non-eqilibrium droplet evaporation was not detectable for particles between 0.5 and 20 μm implying that evaporation to the equilibrium droplet size occurred within 0.8 s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The release of ultrafine particles (UFP) from laser printers and office equipment was analyzed using a particle counter (FMPS; Fast Mobility Particle Sizer) with a high time resolution, as well as the appropriate mathematical models. Measurements were carried out in a 1 m³ chamber, a 24 m³ chamber and an office. The time-dependent emission rates were calculated for these environments using a deconvolution model, after which the total amount of emitted particles was calculated. The total amounts of released particles were found to be independent of the environmental parameters and therefore, in principle, they were appropriate for the comparison of different printers. On the basis of the time-dependent emission rates, “initial burst” emitters and constant emitters could also be distinguished. In the case of an “initial burst” emitter, the comparison to other devices is generally affected by strong variations between individual measurements. When conducting exposure assessments for UFP in an office, the spatial distribution of the particles also had to be considered. In this work, the spatial distribution was predicted on a case by case basis, using CFD simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field and laboratory measurements identified a complex relationship between odour emission rates provided by the US EPA dynamic emission chamber and the University of New South Wales wind tunnel. Using a range of model compounds in an aqueous odour source, we demonstrate that emission rates derived from the wind tunnel and flux chamber are a function of the solubility of the materials being emitted, the concentrations of the materials within the liquid; and the aerodynamic conditions within the device – either velocity in the wind tunnel, or flushing rate for the flux chamber. The ratio of wind tunnel to flux chamber odour emission rates (OU m-2 s) ranged from about 60:1 to 112:1. The emission rates of the model odorants varied from about 40:1 to over 600:1. These results may provide, for the first time, a basis for the development of a model allowing an odour emission rate derived from either device to be used for odour dispersion modelling.