991 resultados para 020300 CLASSICAL PHYSICS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative, quasi-experimental study of the effectiveness of computer-based scientific visualizations for concept learning on the part of Year 11 physics students (n=80) was conducted in six Queensland high school classrooms. Students’ gender and academic ability were also considered as factors in relation to the effectiveness of teaching with visualizations. Learning with visualizations was found to be equally effective as learning without them for all students, with no statistically significant difference in outcomes being observed for the group as a whole or on the academic ability dimension. Male students were found to learn significantly better with visualizations than without, while no such effect was observed for female students. This may give rise to some concern for the equity issues raised by introducing visualizations. Given that other research shows that students enjoy learning with visualizations and that their engagement with learning is enhanced, the finding that the learning outcomes are the same as for teaching without visualizations supports teachers’ use of visualizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical solution is presented in this paper for the vibration response of a ribbed plate clamped on all its boundary edges by employing a travelling wave solution. A clamped ribbed plate test rig is also assembled in this study for the experimental investigation of the ribbed plate response and to provide verification results to the analytical solution. The dynamic characteristics and mode shapes of the ribbed plate are measured and compared to those obtained from the analytical solution and from finite element analysis (FEA). General good agreements are found between the results. Discrepancies between the computational and experimental results at low and high frequencies are also discussed. Explanations are offered in the study to disclose the mechanism causing the discrepancies. The dependency of the dynamic response of the ribbed plate on the distance between the excitation force and the rib is also investigated experimentally. It confirms the findings disclosed in a previous analytical study [T. R. Lin and J. Pan, A closed form solution for the dynamic response of finite ribbed plates. Journal of the Acoustical Society of America 119 (2006) 917-925] that the vibration response of a clamped ribbed plate due to a point force excitation is controlled by the plate stiffness when the source is more than a quarter plate bending wavelength away from the rib and from the plate boundary. The response is largely affected by the rib stiffness when the source location is less than a quarter bending wavelength away from the rib.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers of motor vehicles exhibit safe behaviours. Several car-following models are used in various micro-simulation models. This research compares the mainstream car following models’ capabilities of emulating precise driver behaviour parameters such as headways and Time to Collisions. The comparison firstly illustrates which model is more robust in the metric reproduction. Secondly, the study conducted a series of sensitivity tests to further explore the behaviour of each model. Based on the outcome of these two steps exploration of the models, a modified structure and parameters adjustment for each car-following model is proposed to simulate more realistic vehicle movements, particularly headways and Time to Collision, below a certain critical threshold. NGSIM vehicle trajectory data is used to evaluate the modified models performance to assess critical safety events within traffic flow. The simulation tests outcomes indicate that the proposed modified models produce better frequency of critical Time to Collision than the generic models, while the improvement on the headway is not significant. The outcome of this paper facilitates traffic safety assessment using microscopic simulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The only effective method of Fiber Bragg Grating (FBG) strain modulation has been by changing the distance between its two fixed ends. We demonstrate an alternative being more sensitive to force based on the nonlinear amplification relationship between a transverse force applied to a stretched string and its induced axial force. It may improve the sensitivity and size of an FBG force sensor, reduce the number of FBGs needed for multi-axial force monitoring, and control the resonant frequency of an FBG accelerometer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the fundamental questions regarding the temporal ontology is what is time composed of. While the traditional time structure is based on a set of points, a notion that has been prevalently adopted in classical physics and mathematics, it has also been noticed that intervals have been widely adopted for expre~sion of common sense temporal knowledge, especially in the domain of artificial intelligence. However, there has been a longstanding debate on how intervals should be addressed, leading to two different approaches to the treatment of intervals. In the first, intervals are addressed as derived objects constructed from points, e.g., as sets of points, or as pairs of points. In the second, intervals are taken as primitive themselves. This article provides a critical examination of these two approaches. By means of proposing a definition of intervals in terms of points and types, we shall demonstrate that, while the two different approaches have been viewed as rivals in the literature, they are actually reducible to logically equivalent expressions under some requisite interpretations, and therefore they can also be viewed as allies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Procurou-se, neste trabalho, pensar o tempo no contexto das ciências da saúde, no qual se entrelaçam aspectos físicos, biológicos, psicológicos e sociológicos. Enquanto em nossa percepção do mundo e de nós mesmos o tempo se apresenta sob muitas facetas, na física clássica, conforme o modelo newtoniano, assumia-se a existência de um tempo absoluto, unilinear, homogêneo e independente do observador. Com a teoria da relatividade e o estudo dos sistemas complexos, um novo conceito de tempo apresenta-se na física: o tempo fractal, o qual possibilita maior compatibilidade com as abordagens psicológicas e sociológicas. Nesta perspectiva, a experiência de vida de uma pessoa, e seus respectivos processos de construção da saúde, envolveria uma multiplicidade de tempos, que coexistem e se organizam segundo um padrão coerente de auto-similaridade. Uma quebra desse padrão estaria correlacionada com a ocorrência da doença. Sugere-se que uma abordagem mais adequada do adoecimento deveria levar em conta, como referência para o profissional de saúde, o conceito de tempo fractal, possibilitando maior sintonia do paciente com a complexidade da natureza e, por conseguinte, consigo mesmo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)