936 resultados para 010501 Algebraic Structures in Mathematical Physics
Resumo:
We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.
Resumo:
Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.
Resumo:
We consider fermions in one-dimensional superlattices (SL's), modeled by site-dependent Hubbard-U couplings arranged in a repeated pattern of repulsive (i.e., U>0) and free (U=0) sites. Density matrix renormalization group diagonalization of finite systems is used to calculate the local moment and the magnetic structure factor in the ground state. We have found four regimes for magnetic behavior: uniform local moments forming a spin-density wave (SDW), floppy local moments with short-ranged correlations, local moments on repulsive sites forming long-period SDW's superimposed with short-ranged correlations, and local moments on repulsive sites solely with long-period SDW's; the boundaries between these regimes depend on the range of electronic densities ρ and on the SL aspect ratio. Above a critical electronic density, ρ↑↓, the SDW period oscillates both with ρ and with the spacer thickness. The former oscillation allows one to reproduce all SDW wave vectors within a small range of electronic densities, unlike the homogeneous system. The latter oscillation is related to the exchange oscillation observed in magnetic multilayers. A crossover between regimes of thin to thick layers has also been observed.
Resumo:
Optical fiber materials exhibit a nonlinear response to strong electric fields, such as those of optical signals confined within the small fiber core. Fiber nonlinearity is an essential component in the design of the next generation of advanced optical communication systems, but its use is often avoided by engineers because of its intractability. The application of nonlinear technologies in fiber optics offers new opportunities for the design of photonic systems and devices. In this chapter, we make an overview of recent progress in mathematical theory and practical applications of temporal dissipative solitons and self-similar nonlinear structures in optical fiber systems. The design of all-optical high-speed signal processing devices, based on nonlinear dissipative structures, is discussed.
Resumo:
Optical fiber materials exhibit a nonlinear response to strong electric fields, such as those of optical signals confined within the small fiber core. Fiber nonlinearity is an essential component in the design of the next generation of advanced optical communication systems, but its use is often avoided by engineers because of its intractability. The application of nonlinear technologies in fiber optics offers new opportunities for the design of photonic systems and devices. In this chapter, we make an overview of recent progress in mathematical theory and practical applications of temporal dissipative solitons and self-similar nonlinear structures in optical fiber systems. The design of all-optical high-speed signal processing devices, based on nonlinear dissipative structures, is discussed.
Resumo:
Acknowledgements MW and RVD have been supported by the German Federal Ministry for Education and Research via the BMBF Young Investigators Group CoSy-CC2 (grant 18 Marc Wiedermann et al. no. 01LN1306A). JFD thanks the Stordalen Foundation and BMBF (project GLUES) for financial support. JK acknowledges the IRTG 1740 funded by DFG and FAPESP. Coupled climate network analysis has been performed using the Python package pyunicorn (Donges et al, 2015a) that is available at https://github.com/pik-copan/pyunicorn.
Resumo:
Acknowledgements MW and RVD have been supported by the German Federal Ministry for Education and Research via the BMBF Young Investigators Group CoSy-CC2 (grant 18 Marc Wiedermann et al. no. 01LN1306A). JFD thanks the Stordalen Foundation and BMBF (project GLUES) for financial support. JK acknowledges the IRTG 1740 funded by DFG and FAPESP. Coupled climate network analysis has been performed using the Python package pyunicorn (Donges et al, 2015a) that is available at https://github.com/pik-copan/pyunicorn.
Resumo:
The longitudinal resistivity rho(xx) of two-dimensional electron gases formed in wells with two subbands displays ringlike structures when plotted in a density-magnetic-field diagram, due to the crossings of spin-split Landau levels (LLs) from distinct subbands. Using spin density functional theory and linear response, we investigate the shape and spin polarization of these structures as a function of temperature and magnetic-field tilt angle. We find that (i) some of the rings ""break'' at sufficiently low temperatures due to a quantum Hall ferromagnetic phase transition, thus exhibiting a high degree of spin polarization (similar to 50%) within, consistent with the NMR data of Zhang et al. [Phys. Rev. Lett. 98, 246802 (2007)], and (ii) for increasing tilting angles the interplay between the anticrossings due to inter-LL couplings and the exchange-correlation effects leads to a collapse of the rings at some critical angle theta(c), in agreement with the data of Guo et al. [Phys. Rev. B 78, 233305 (2008)].
Resumo:
The radiation chemistry of two TFE/PMVE copolymers with TFE mole fractions of 0.66 and 0.81 has been studied under vacuum using Co-60 gamma -radiation over absorbed dose ranges up to 4.2 MGy. The radiolysis temperature was 313 K for both TFE/PMVE copolymers. New structure formation in the copolymers was identified by solid-state F-19 NMR and the G-values for new chain ends of 2.1 and 0.5 and for branching sites of 0.9 and 0.2 have been obtained for the TFE/PMVE with TFE mole fractions of 0.66 and 0.81, respectively. The relative yields of-O-CF3 and -CF2-CF3 chain ends were found to be proportional to the copolymer composition, but the yields of the -CF2-CF3 chain ends and -CF- branch points mere not linearly related ia the composition. rather they wets correlated with the radical yields measured at 77 K. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Quantitative linguistics has provided us with a number of empirical laws that characterise the evolution of languages and competition amongst them. In terms of language usage, one of the most influential results is Zipf’s law of word frequencies. Zipf’s law appears to be universal, and may not even be unique to human language. However, there is ongoing controversy over whether Zipf’s law is a good indicator of complexity. Here we present an alternative approach that puts Zipf’s law in the context of critical phenomena (the cornerstone of complexity in physics) and establishes the presence of a large-scale “attraction” between successive repetitions of words. Moreover, this phenomenon is scale-invariant and universal – the pattern is independent of word frequency and is observed in texts by different authors and written in different languages. There is evidence, however, that the shape of the scaling relation changes for words that play a key role in the text, implying the existence of different “universality classes” in the repetition of words. These behaviours exhibit striking parallels with complex catastrophic phenomena.
Resumo:
Ontic structural realism is the view that structures are what is real in the first place in the domain of fundamental physics. The structures are usually conceived as including a primitive modality. However, it has not been spelled out as yet what exactly that modality amounts to. This paper proposes to fill this lacuna by arguing that the fundamental physical structures possess a causal essence, being powers. Applying the debate about causal vs. categorical properties in analytic metaphysics to ontic structural realism, I show that the standard argument against categorical and for causal properties holds for structures as well. Structural realism, as a position in the metaphysics of science that is a form of scientific realism, is committed to causal structures. The metaphysics of causal structures is supported by physics, and it can provide for a complete and coherent view of the world that includes all domains of empirical science.
Resumo:
We present a study of the influence of atomic order on the relative stability of the bcc and the 18R martensitic structures in a Cu2.96Al0.92Be0.12 crystal. Calorimetric measurements have shown that disorder increases the stability of the 18R phase, contrary to what happens in Cu-Zn-Al alloys for which it is the bcc phase that is stabilized by disordering the system. This different behavior has been explained in terms of a model recently reported. We have also proved that the entropy change at the martensitic transition is independent of the state of atomic order of the crystal, as predicted theoretically. Our results suggest that differences in the vibrational spectrum of the crystal due to different states of atomic order must be equal in the bcc and in the close-packed phases.