989 resultados para 010405 Statistical Theory
Resumo:
The effect of the heat flux on the rate of chemical reaction in dilute gases is shown to be important for reactions characterized by high activation energies and in the presence of very large temperature gradients. This effect, obtained from the second-order terms in the distribution function (similar to those obtained in the Burnett approximation to the solution of the Boltzmann equation), is derived on the basis of information theory. It is shown that the analytical results describing the effect are simpler if the kinetic definition for the nonequilibrium temperature is introduced than if the thermodynamic definition is introduced. The numerical results are nearly the same for both definitions
Resumo:
Approximate Lie symmetries of the Navier-Stokes equations are used for the applications to scaling phenomenon arising in turbulence. In particular, we show that the Lie symmetries of the Euler equations are inherited by the Navier-Stokes equations in the form of approximate symmetries that allows to involve the Reynolds number dependence into scaling laws. Moreover, the optimal systems of all finite-dimensional Lie subalgebras of the approximate symmetry transformations of the Navier-Stokes are constructed. We show how the scaling groups obtained can be used to introduce the Reynolds number dependence into scaling laws explicitly for stationary parallel turbulent shear flows. This is demonstrated in the framework of a new approach to derive scaling laws based on symmetry analysis [11]-[13].
Resumo:
Bibliography: p. 48-49.
Resumo:
Thesis (M. S.)--University of Illinois at Urbana-Champaign.
Resumo:
Mode of access: Internet.
Resumo:
The strong mixing of many-electron basis states in excited atoms and ions with open f shells results in very large numbers of complex, chaotic eigenstates that cannot be computed to any degree of accuracy. Describing the processes which involve such states requires the use of a statistical theory. Electron capture into these “compound resonances” leads to electron-ion recombination rates that are orders of magnitude greater than those of direct, radiative recombination and cannot be described by standard theories of dielectronic recombination. Previous statistical theories considered this as a two-electron capture process which populates a pair of single-particle orbitals, followed by “spreading” of the two-electron states into chaotically mixed eigenstates. This method is similar to a configuration-average approach because it neglects potentially important effects of spectator electrons and conservation of total angular momentum. In this work we develop a statistical theory which considers electron capture into “doorway” states with definite angular momentum obtained by the configuration interaction method. We apply this approach to electron recombination with W20+, considering 2×106 doorway states. Despite strong effects from the spectator electrons, we find that the results of the earlier theories largely hold. Finally, we extract the fluorescence yield (the probability of photoemission and hence recombination) by comparison with experiment.
Resumo:
We present a novel method, called the transform likelihood ratio (TLR) method, for estimation of rare event probabilities with heavy-tailed distributions. Via a simple transformation ( change of variables) technique the TLR method reduces the original rare event probability estimation with heavy tail distributions to an equivalent one with light tail distributions. Once this transformation has been established we estimate the rare event probability via importance sampling, using the classical exponential change of measure or the standard likelihood ratio change of measure. In the latter case the importance sampling distribution is chosen from the same parametric family as the transformed distribution. We estimate the optimal parameter vector of the importance sampling distribution using the cross-entropy method. We prove the polynomial complexity of the TLR method for certain heavy-tailed models and demonstrate numerically its high efficiency for various heavy-tailed models previously thought to be intractable. We also show that the TLR method can be viewed as a universal tool in the sense that not only it provides a unified view for heavy-tailed simulation but also can be efficiently used in simulation with light-tailed distributions. We present extensive simulation results which support the efficiency of the TLR method.
Resumo:
The estimation of P(S-n > u) by simulation, where S, is the sum of independent. identically distributed random varibles Y-1,..., Y-n, is of importance in many applications. We propose two simulation estimators based upon the identity P(S-n > u) = nP(S, > u, M-n = Y-n), where M-n = max(Y-1,..., Y-n). One estimator uses importance sampling (for Y-n only), and the other uses conditional Monte Carlo conditioning upon Y1,..., Yn-1. Properties of the relative error of the estimators are derived and a numerical study given in terms of the M/G/1 queue in which n is replaced by an independent geometric random variable N. The conclusion is that the new estimators compare extremely favorably with previous ones. In particular, the conditional Monte Carlo estimator is the first heavy-tailed example of an estimator with bounded relative error. Further improvements are obtained in the random-N case, by incorporating control variates and stratification techniques into the new estimation procedures.
Resumo:
We contrast four distinct versions of the BCS-Bose statistical crossover theory according to the form assumed for the electron-number equation that accompanies the BCS gap equation. The four versions correspond to explicitly accounting for two-hole-(2h) as well as two-electron-(2e) Cooper pairs (CPs), or both in equal proportions, or only either kind. This follows from a recent generalization of the Bose-Einstein condensation (GBEC) statistical theory that includes not boson-boson interactions but rather 2e- and also (without loss of generality) 2h-CPs interacting with unpaired electrons and holes in a single-band model that is easily converted into a two-band model. The GBEC theory is essentially an extension of the Friedberg-Lee 1989 BEC theory of superconductors that excludes 2h-CPs. It can thus recover, when the numbers of 2h- and 2e-CPs in both BE-condensed and non-condensed states are separately equal, the BCS gap equation for all temperatures and couplings as well as the zero-temperature BCS (rigorous-upper-bound) condensation energy for all couplings. But ignoring either 2h- or 2e-CPs it can do neither. In particular, only half the BCS condensation energy is obtained in the two crossover versions ignoring either kind of CPs. We show how critical temperatures T-c from the original BCS-Bose crossover theory in 2D require unphysically large couplings for the Cooper/BCS model interaction to differ significantly from the T(c)s of ordinary BCS theory (where the number equation is substituted by the assumption that the chemical potential equals the Fermi energy). (c) 2007 Published by Elsevier B.V.
Resumo:
A “most probable state” equilibrium statistical theory for random distributions of hetons in a closed basin is developed here in the context of two-layer quasigeostrophic models for the spreading phase of open-ocean convection. The theory depends only on bulk conserved quantities such as energy, circulation, and the range of values of potential vorticity in each layer. The simplest theory is formulated for a uniform cooling event over the entire basin that triggers a homogeneous random distribution of convective towers. For a small Rossby deformation radius typical for open-ocean convection sites, the most probable states that arise from this theory strongly resemble the saturated baroclinic states of the spreading phase of convection, with a stabilizing barotropic rim current and localized temperature anomaly.
Resumo:
Nearest–neighbour balance is considered a desirable property for an experiment to possess in situations where experimental units are influenced by their neighbours. This paper introduces a measure of the degree of nearest–neighbour balance of a design. The measure is used in an algorithm which generates nearest–neighbour balanced designs and is readily modified to obtain designs with various types of nearest–neighbour balance. Nearest–neighbour balanced designs are produced for a wide class of parameter settings, and in particular for those settings for which such designs cannot be found by existing direct combinatorial methods. In addition, designs with unequal row and column sizes, and designs with border plots are constructed using the approach presented here.
Resumo:
The aim of the present study was to test a hypothetical model to examine if dispositional optimism exerts a moderating or a mediating effect between personality traits and quality of life, in Portuguese patients with chronic diseases. A sample of 540 patients was recruited from central hospitals in various districts of Portugal. All patients completed self-reported questionnaires assessing socio-demographic and clinical variables, personality, dispositional optimism, and quality of life. Structural equation modeling (SEM) was used to analyze the moderating and mediating effects. Results suggest that dispositional optimism exerts a mediator rather than a moderator role between personality traits and quality of life, suggesting that “the expectation that good things will happen” contributes to a better general well-being and better mental functioning.
Resumo:
The statistical theory of signal detection and the estimation of its parameters are reviewed and applied to the case of detection of the gravitational-wave signal from a coalescing binary by a laser interferometer. The correlation integral and the covariance matrix for all possible static configurations are investigated numerically. Approximate analytic formulas are derived for the case of narrow band sensitivity configuration of the detector.