956 resultados para íon Fe (II)
Resumo:
57Fe Mössbauer spectroscopy of the mononuclear [Fe(II)(isoxazole)6](BF4) 2compound has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S = 0) and high-spin (S = 2) states. A temperature-dependent spin transition curve has been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures in the 240-60K range during the cooling and heating cycle. The compound exhibits a temperature-dependent two-step spin transition phenomenon with Tsco (step 1) = 92 and Tsco (step2) = 191K. The compound has three high-spin Fe(II) sites at the highest temperature of study; among them, two have slightly different coordination environments. These two Fe(II) sites are found to undergo a spin transition, while the third Fe(II) site retains the high-spin state over the whole temperature range. Possible reasons for the formation of the two steps in the spin transition curve are discussed. The observations made from the present study are in complete agreement with those envisaged from earlier magnetic and structural studies made on [Fe(II)(isoxazole)6](BF4)2, but highlights the nature of the spin crossover mechanism.
Resumo:
Ni(II)-Fe(II)-Fe(III) layered double hydroxides (LDH) or Ni-containing sulfate green rust (GR2) samples were prepared from Ni(II), Fe(II) and Fe(III) sulfate salts and analyzed with X ray diffraction. Nickel is readily incorporated in the GR2 structure and forms a solid solution between GR2 and a Ni(II)-Fe(III) LDH. There is a correlation between the unit cell a-value and the fraction of Ni(II) incorporated into the Ni(II)-GR2 structure. Since there is strong evidence that the divalent/trivalent cation ratio in GR2 is fixed at 2, it is possible in principle to determine the extent of divalent cation substitution for Fe(II) in GR2 from the unit cell a-value. Oxidation forms a mixture of minerals but the LDH structure is retained if at least 20 % of the divalent cations in the initial solution are Ni(II). It appears that Ni(II) is incorporated in a stable LDH structure. This may be important for two reasons, first for understanding the formation of LDHs, which are anion exchangers, in the natural environment. Secondly, this is important for understanding the fate of transition metals in the environment, particularly in the presence of reduced Fe compounds.
Resumo:
In this study Ucides cordatus crab shells were utilized as Fe (II) sorbent as material of low cost and simple preparation. Values of pH of standard solution, biosorbent mass, particles size, contact time (t c) and initial concentration of the standard solution were optimized. The best conditions were pH = 2.00, t c = 840 min and Mc = 0.25 g. The kinetic pseudo first-order model displayed the best description of the adsorption process and the equilibrium study showed that the Langmuir model better describes the adsorption of the Fe (II). There is great affinity between the Fe (II) and the biosorbent.
Resumo:
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we show that safranine at the concentrations usually employed as a probe of mitochondrial membrane potential significantly protects against the oxidative damage of mitochondria induced by Fe(II)citrate. The effect of safranine was illustrated by experiments showing that this dye strongly inhibits both production of thiobarbituric acid-reactive substances and membrane potential decrease when energized mitochondria were exposed to Fe(II)citrate in the presence of Ca 2+ ions. Similar results were obtained with the lipophylic compound trifluoperazine. It is proposed that, like trifluoperazine, safranine decreases the rate of lipid peroxidation due to its insertion in the membrane altering the physical state of the lipid phase.
Resumo:
[EN] Fe(II) oxidation kinetics were studied in seawater and in seawater enriched with exudates excreted by Phaeodactylum tricornutum as an organic ligand model. The exudates produced after 2, 4, and 8 days of culture at 6.21 .. 107, 2.29 .. 108, and 4.98 .. 108 cell L?1 were selected. The effects of pH (7.2?8.2), temperature (5?35 ºC), and salinity (10?36.72) on the Fe(II) oxidation rate were studied. All the data were compared with the results for seawater without exudates (control). The Fe(II) rate constant decreased as a function of culture time and cell concentration in the culture at different pH, temperature, and salinity. All the experimental data obtained in this study were fitted to a polynomial function in order to quantify the fractional contribution of the organic exudates from the diatoms to the Fe(II) oxidation rate in natural seawater. Experimental results showed that the organic exudates excreted by P. tricornutum affect Fe(II) oxidation, increasing the lifetime of Fe(II) in seawater. A kinetic model approach was carried out to account for the speciation of each Fe(II) type together with its contribution to the overall rate.
Resumo:
The effects of pressure and temperature on the energy (E-op) of the metal-to-metal charge transfer (MMCT, Fe-II --> Co-III) transition of the cyano-bridged complexes trans - [(LCoNCFe)-Co-14(CN)(5)](-) and cis-[(LCoNCFe)-Co-14(CN)(5)](-) (where L-14 = 6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine) were examined. The changes in the redox potentials of the cobalt and iron metal centres with pressure and temperature were also examined and the results interpreted with Marcus Hush theory. The observed redox reaction volumes can mainly be accounted for in terms of localised electrostriction effects. The shifts in E-op due to both pressure and temperature were found to be less than the shifts in the energy difference (E degrees) between the Co-III-Fe-II and Co-II-Fe-III redox isomers. The pressure and temperature dependence of the reorganisational energy, as well as contributions arising from the different spin states of Co-II, are discussed in order to account for this trend. To study the effect of pressure on Co-III electronic absorption bands, a new cyano-bridged complex, trans - [(LCoNCCo)-Co-14(CN)(5)], was prepared and characterised spectroscopically and structurally. X-Ray crystallography revealed this complex to be isostructural with trans -[(LCoNCFe)-Co-14(CN)(5)] center dot 5H(2)O.
Resumo:
Three new metal-organic polymeric complexes, [Fe(N-3)(2)(bPP)(2)] (1), [Fe(N-3)(2)(bpe)] (2), and [Fe(N-3)(2)(phen)] (3) [bpp = (1,3-bis(4-pyridyl)-propane), bpe = (1,2-bis(4-pyridyl)-ethane), phen = 1,10-phenanthroline], have been synthesized and characterized by single-crystal X-ray diffraction studies and low-temperature magnetic measurements in the range 300-2 K. Complexes 1 and 2 crystallize in the monoclinic system, space group C2/c, with the following cell parameters: a = 19.355(4) Angstrom, b = 7.076(2) Angstrom, c = 22.549(4) Angstrom, beta = 119.50(3)degrees, Z = 4, and a = 10.007(14) Angstrom, b = 13.789(18) Angstrom, c = 10.377(14) Angstrom, beta = 103.50(1)degrees, Z = 4, respectively. Complex 3 crystallizes in the triclinic system, space group P (1) over bar, with a = 7.155(12) Angstrom, b = 10.066(14) Angstrom, c = 10.508(14) Angstrom, alpha = 109.57(1)degrees, beta = 104.57(1)degrees, gamma = 105.10(1)degrees, and Z = 2. All coordination polymers exhibit octahedral Fe(II) nodes. The structural determination of 1 reveals a parallel interpenetrated structure of 2D layers of (4,4) topology, formed by Fe(II) nodes linked through bpp ligands, while mono-coordinated azide anions are pendant from the corrugated sheet. Complex 2 has a 2D arrangement constructed through 1D double end-to-end azide bridged iron(11) chains interconnected through bpe ligands. Complex 3 shows a polymeric arrangement where the metal ions are interlinked through pairs of end-on and end-to-end azide ligands exhibiting a zigzag arrangement of metals (Fe-Fe-Fe angle of 111.18degrees) and an intermetallic separation of 3.347 Angstrom (through the EO azide) and of 5.229 Angstrom (EE azide). Variable-temperature magnetic susceptibility data suggest that there is no magnetic interaction between the metal centers in 1, whereas in 2 there is an antiferromagnetic interaction through the end-to-end azide bridge. Complex 3 shows ferro- as well as anti-ferromagnetic interactions between the metal centers generated through the alternating end-on and end-to-end azide bridges. Complex I has been modeled using the D parameter (considering distorted octahedral Fe(II) geometry and with any possible J value equal to zero) and complex 2 has been modeled as a one-dimensional system with classical and/or quantum spin where we have used two possible full diagonalization processes: without and with the D parameter, considering the important distortions of the Fe(II) ions. For complex 3, the alternating coupling model impedes a mathematical solution for the modeling as classical spins. With quantum spin, the modeling has been made as in 2.
Resumo:
Three coordination complexes of Co(II)/Fe(II) with 4,4'-trimethylenedipyridine (bpp) and pseudohalides (SCN-, SeCN- and N-3(-)) have been synthesized. The complexes have been characterized by X-ray single crystal structure determination. They are isomorphous having 2D layers in which two independent wavy nets display parallel interwoven structures. Pseudohalide binds metal centers through N terminal and occupies the trans axial positions of the octahedral metal coordination environment. Pseudohalide remains pendant on both sides of the polymeric layer and help the stacking through hydrogen bonding. The conformation of bpp in the interpenetrated nets is observed to be dependent on the choice of pseudohalide. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This paper deals with the complex issue of reversing long-term improvements of fertility in soils derived from heathlands and acidic grasslands using sulfur-based amendments. The experiment was conducted on a former heathland and acid grassland in the U.K. that was heavily fertilized and limed with rock phosphate, chalk, and marl. The experimental work had three aims. First, to determine whether sulfurous soil amendments are able to lower pH to a level suitable for heathland and acidic grassland re-creation (approximately 3 pH units). Second, to determine what effect the soil amendments have on the available pool of some basic cations and some potentially toxic acidic cations that may affect the plant community. Third, to determine whether the addition of Fe to the soil system would sequester PO4− ions that might be liberated from rock phosphate by the experimental treatments. The application of S0 and Fe(II)SO4− to the soil was able to reduce pH. However, only the highest S0 treatment (2,000 kg/ha S) lowered pH sufficiently for heathland restoration purposes but effectively so. Where pH was lowered, basic cations were lost from the exchangeable pool and replaced by acidic cations. Where Fe was added to the soil, there was no evidence of PO4− sequestration from soil test data (Olsen P), but sequestration was apparent because of lower foliar P in the grass sward. The ability of the forb Rumex acetosella to apparently detoxify Al3+, prevalent in acidified soils, appeared to give it a competitive advantage over other less tolerant species. We would anticipate further changes in plant community structure through time, driven by Al3+ toxicity, leading to the competitive exclusion of less tolerant species. This, we suggest, is a key abiotic driver in the restoration of biotic (acidic plant) communities.
Resumo:
The abundance of heavy r-elements may provide a better understanding of the r-process, and the determination of several reference r-elements should allow a better determination of a star`s age. The space UV region (lambda < 3000 angstrom) presents a large number of lines of the heavy elements, and in the case of some elements, such as Bi, Pt, Au, detectable lines are not available elsewhere. The extreme ""r-process star"" CS 31082-001 ([Fe/H] = -2.9) was observed in the space UV to determine abundances of the heaviest stable elements, using STIS on board Hubble Space Telescope.
Resumo:
During the 13 day Southern Ocean Iron RE-lease Experiment (SOIREE), dissolved iron concentrations decreased rapidly following each of three iron-enrichments, but remained high (>1 nM, up to 80% as FeII) after the fourth and final enrichment on day 8. The former trend was mainly due to dilution (spreading of iron-fertilized waters) and particle scavenging. The latter may only be explained by a joint production-maintenance mechanism; photoreduction is the only candidate process able to produce sufficiently high FeII, but as such levels persisted overnight (8 hr dark period) -ten times the half-life for this species- a maintenance mechanism (complexation of FeII) is required, and is supported by evidence of increased ligand concentrations on day 12. The source of these ligands and their affinity for FeII is not known. This retention of iron probably permitted the longevity of this bloom raising fundamental questions about iron cycling in HNLC (High Nitrate Low Chlorophyll) Polar waters.
Resumo:
The structure and spin-crossover magnetic behavior of [FeII16][BF4]2 (1 = isoxazole) and [FeII16][ClO4]2 have been studied. [FeII16][BF4]2 undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3̄, a = 17.4387(4) Å, c = 7.6847(2) Å] and at 130 K [space group P1̄, a = 17.0901(2) Å, b = 16.7481(2) Å, c = 7.5413(1) Å, α = 90.5309(6)°, β = 91.5231(6)°, γ = 117.8195(8)°] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 μB is consistent with high-spin Fe(II). A plateau in μ(T) having a moment of 3.3 μB centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe−N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [FeII16][ClO4]2 [space group P3̄, a = 17.5829(3) Å, c = 7.8043(2) Å, β = 109.820 (3)°, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [FeII16][ClO4]2 slowly decomposes in solutions containing acetic anhydride to form [FeIII3O(OAc)613][ClO4] [space group I2, a = 10.1547(7) Å, b = 16.5497(11) Å, c = 10.3205(9) Å, β = 109.820 (3)°, T = 200 K]. The isosceles Fe3 unit contains two Fe···Fe distances of 3.2844(1) Å and a third Fe···Fe distance of 3.2857(1) Å. The magnetic data can be fit to a trinuclear model with ℋ = −2J(S1·S2 + S2·S3) − 2J13(S1·S3), where J = −27.1 and J13 = −32.5 cm-1.