951 resultados para árboles de decisión


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen basado en el de la publicación.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ES] Cada vez son más numerosos los programas de fidelización que ofrecen al titular la posibilidad de comprar puntos o conseguir premios, viajes o billetes aéreos pagando una parte de los mismos con dinero. Dicha característica, unida a la propia estructura y dinámica de los programas de fidelización y a la actual coyuntura del sector turístico, ha permitido desarrollar plataformas de venta directa desde las que ofrecer servicios a los titulares.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este proyecto se analiza y compara el comportamiento del algoritmo CTC diseñado por el grupo de investigación ALDAPA usando bases de datos muy desbalanceadas. En concreto se emplea un conjunto de bases de datos disponibles en el sitio web asociado al proyecto KEEL (http://sci2s.ugr.es/keel/index.php) y que han sido ya utilizadas con diferentes algoritmos diseñados para afrontar el problema de clases desbalanceadas (Class imbalance problem) en el siguiente trabajo: A. Fernandez, S. García, J. Luengo, E. Bernadó-Mansilla, F. Herrera, "Genetics-Based Machine Learning for Rule Induction: State of the Art, Taxonomy and Comparative Study". IEEE Transactions on Evolutionary Computation 14:6 (2010) 913-941, http://dx.doi.org/10.1109/TEVC.2009.2039140 Las bases de datos (incluidas las muestras del cross-validation), junto con los resultados obtenidos asociados a la experimentación de este trabajo se pueden encontrar en un sitio web creado a tal efecto: http://sci2s.ugr.es/gbml/. Esto hace que los resultados del CTC obtenidos con estas muestras sean directamente comparables con los obtenidos por todos los algoritmos obtenidos en este trabajo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabajo pretende ser de utilidad para cualquier, en general, persona interesada en profundizar en la toma de decisiones. Se combina un planteamiento cuantitativo de la toma de decisiones con un planteamiento cualitativo sobre aspectos personales del decisor. En particular puede ser utilizado como material docente en asignaturas, tanto de la Licenciatura en Administración y Dirección de Empresas como de la Licenciatura en Economía, que aborden la toma de decisión empresarial. El material se estructura en cinco capítulos: •En el primer capítulo, se justifica la existencia de empresas, frente al sistema de asignación de recursos del mercado, y el papel de la dirección. •En el segundo capítulo, se razona bajo que criterios los individuos deciden entrar a formar parte de una empresa, u organización. Asimismo, se presenta el concepto y proceso de decisión. •En el tercer capítulo se destaca la importancia de la generación, recogida y gestión de información como paso previo a la adopción de una decisión. •En el cuarto capítulo se trata de modelizar el esquema mental de resolución de problemas, para lo cuál se utilizarán representaciones como las matrices de decisión y los árboles de decisión. •En el quinto, y último capítulo, se aborda el concepto de negociación, como proceso que permite integrar distintos objetivos individuales en una unidad de decisión y una acción colectiva.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudio es una revisión de la literatura sobre la predicción del fracaso empresarial, definiendo en primer lugar el concepto de fracaso junto con sus limitaciones, y realizando un estudio sobre los modelos de predicción de fracaso empresarial más relevantes que hayan sido desarrollados en estos casi 100 años. Partiendo de unos modelos simples basados en el estudio y análisis de los ratios, hasta efectuar unas metodologías innovadoras, como el análisis multivariante, la aplicación de variables ficticias en los estudios, el modelo de regresión logit, y actualmente empleando programas informáticos basados en la inteligencia artificial utilizando las redes neuronales y los árboles de decisión.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este estudio se realizó un análisis predictivo de la aparición de eventos adversos de los pacientes de una IPS de Bogotá, Mederi Hospital Universitario de Barrios Unidos (HUBU) durante el año 2013; relacionados con los indicadores de eficiencia hospitalaria (Porcentaje de ocupación hospitalaria, número de egresos hospitalarios, promedio de estancia hospitalaria, número de egresos de urgencias, promedio de estancia en urgencias). Los datos fueron exportados a una matriz de análisis de las variables cualitativas; fueron presentadas con frecuencias absolutas y relativas, las variables cuantitativas (edad, tiempos de estancia) fueron presentadas con media, desviaciones estándar. Se agruparon los datos de eventos adversos y de eficiencia hospitalaria en una nueva matriz que permitiera el análisis predictivo la nueva matriz fue exportada al software de modelación estadístico Eviews 6.5; se especificaron modelos predictivos multivariados para la variable número de eventos adversos, respecto de los indicadores de eficiencia hospitalaria y se estimaron las probabilidades de ocurrencia, análisis de correlación y multicolinealidad; los resultados se presentaron en tablas de estimación para cada modelo, se restringieron los eventos adversos prevenibles y no prevenibles información obtenida a través de un sistema de información que registra los factores relacionados con la ocurrencia de eventos adversos en salud, a través del sistema de reporte de eventos en salud, reporte en las historias clínicas, reporte individual, reporte por servicio, análisis de datos y estudios de caso, de la misma forma fueron extraídos los datos de eficiencia hospitalaria para el mismo periodo. El análisis y gestión de eventos adversos pretende establecer estrategias de mejoramiento continuo y análisis de resultados frente a los indicadores de eficiencia que permitan intervención de los factores de riesgo operativo de los servicios del Hospital Universitario de Barrios Unidos (HUBU), relacionados con eventos adversos en la atención de los pacientes en especial se debe enfocar en la gestión de los egresos de pacientes de acuerdo a los resultados obtenidos con el fin de alinearse y fortalecer las políticas de seguridad del paciente para brindar una atención integral con calidad y eficiencia, disminuyendo las quejas en la atención, las glosas, los riesgos jurídicos, de acuerdo al modelo predictivo estudiado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los métodos utilizados para analizar opciones de inversión generalmente involucran consideraciones de flujo de caja tales como calcular la tasa de retorno o el valor actual neto. El Análisis de Decisiones añade una nueva dimensión al considerar cuantitativamente el riesgo e incertidumbre y como estos factores pueden ser utilizados para formular estrategias de inversión. La pieza fundamental del Análisis de Decisiones es el concepto de Valor Esperado, que es un método para combinar los estimados de rentabilidad con los estimados cuantitativos de riesgo a fin de obtener un criterio de decisión ajustado por riesgo. El Valor Esperado se obtiene ponderando los posibles resultados con la probabilidad de ocurrencia de cada uno de ellos. Para el caso en el cual los resultados son expresados como el VAN de los flujos de caja respectivos, el resultado es usualmente llamado Valor Actual Esperado (VAE) Para la evaluación de los proyectos se utilizan árboles de decisión o técnicas de simulación, donde éstas últimas se emplean cuando existen grandes incertidumbres y se desean obtener contornos de probabilidad del VAN. El criterio de aceptación establece que un proyecto puede llevarse a cabo si su VAE es positivo. Si se selecciona la alternativa que tiene el mayor VAE entre un conjunto de alternativas mutuamente excluyentes, el valor monetario esperado de todo el portafolio de decisiones será mayor que aquel que se obtendría seleccionando una estrategia alternativa

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ste trabajo presenta un análisis comparativo entre tres algoritmos de aprendizaje diferentes basados en Árboles de Decisión (C4.5) y Redes Neuronales Artificiales (Perceptrón Multicapa MLP y Red Neuronal de Regresión General GRNN) que han sido implementados con el objetivo de predecir los resultados de la rehabilitación cognitiva de personas con daño cerebral adquirido. En el análisis se han incluido datos demográficos del paciente, el perfil de afectación y los resultados provenientes de las tareas de rehabilitación ejecutadas por los pacientes. Los modelos han sido evaluados utilizando la base de datos del Institut Guttmann. El rendimiento de los algoritmos se midió a través del análisis de la especificidad, sensibilidad y exactitud en la precisión y el análisis de la matriz de confusión. Los resultados muestran que la implementación del C4.5 alcanzó una especificidad, sensibilidad y exactitud en la precisión del 98.43%, 83.77% y 89.42% respectivamente. El rendimiento del C4.5 fue significativamente superior al obtenido por el Perceptrón Multicapa y la Red de Regresión General.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El propósito principal de esta investigación es la aplicación de la Metaplasticidad Artificial en un Perceptrón Multicapa (AMMLP) como una herramienta de minería de datos para la predicción y extracción explícita de conocimiento del proceso de rehabilitación cognitiva en pacientes con daño cerebral adquirido. Los resultados obtenidos por el AMMLP junto con el posterior análisis de la base de datos ayudarían a los terapeutas a conocer las características de los pacientes que mejoran y los programas de rehabilitación que han seguido. Esto incrementaría el conocimiento del proceso de rehabilitación y facilitaría la elaboración de hipótesis terapéuticas permitiendo la optimización y personalización de las terapias. La evaluación del AMMLP se ha realizado con datos proporcionados por el Institut Guttmann. Los resultados del AMMLP fueron comparados con los obtenidos con una red neuronal de retropropagación y con árboles de decisión. La exactitud en la predicción obtenida por el AMMLP en la subfunción cognitiva memoria verbal-visual fue de 90.71 %, resultado muy superior a los obtenidos por los demás algoritmos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis doctoral se enmarca dentro de la computación con membranas. Se trata de un tipo de computación bio-inspirado, concretamente basado en las células de los organismos vivos, en las que se producen múltiples reacciones de forma simultánea. A partir de la estructura y funcionamiento de las células se han definido diferentes modelos formales, denominados P sistemas. Estos modelos no tratan de modelar el comportamiento biológico de una célula, sino que abstraen sus principios básicos con objeto de encontrar nuevos paradigmas computacionales. Los P sistemas son modelos de computación no deterministas y masivamente paralelos. De ahí el interés que en los últimos años estos modelos han suscitado para la resolución de problemas complejos. En muchos casos, consiguen resolver de forma teórica problemas NP-completos en tiempo polinómico o lineal. Por otra parte, cabe destacar también la aplicación que la computación con membranas ha tenido en la investigación de otros muchos campos, sobre todo relacionados con la biología. Actualmente, una gran cantidad de estos modelos de computación han sido estudiados desde el punto de vista teórico. Sin embargo, el modo en que pueden ser implementados es un reto de investigación todavía abierto. Existen varias líneas en este sentido, basadas en arquitecturas distribuidas o en hardware dedicado, que pretenden acercarse en lo posible a su carácter no determinista y masivamente paralelo, dentro de un contexto de viabilidad y eficiencia. En esta tesis doctoral se propone la realización de un análisis estático del P sistema, como vía para optimizar la ejecución del mismo en estas plataformas. Se pretende que la información recogida en tiempo de análisis sirva para configurar adecuadamente la plataforma donde se vaya a ejecutar posteriormente el P sistema, obteniendo como consecuencia una mejora en el rendimiento. Concretamente, en esta tesis se han tomado como referencia los P sistemas de transiciones para llevar a cabo el estudio de dicho análisis estático. De manera un poco más específica, el análisis estático propuesto en esta tesis persigue que cada membrana sea capaz de determinar sus reglas activas de forma eficiente en cada paso de evolución, es decir, aquellas reglas que reúnen las condiciones adecuadas para poder ser aplicadas. En esta línea, se afronta el problema de los estados de utilidad de una membrana dada, que en tiempo de ejecución permitirán a la misma conocer en todo momento las membranas con las que puede comunicarse, cuestión que determina las reglas que pueden aplicarse en cada momento. Además, el análisis estático propuesto en esta tesis se basa en otra serie de características del P sistema como la estructura de membranas, antecedentes de las reglas, consecuentes de las reglas o prioridades. Una vez obtenida toda esta información en tiempo de análisis, se estructura en forma de árbol de decisión, con objeto de que en tiempo de ejecución la membrana obtenga las reglas activas de la forma más eficiente posible. Por otra parte, en esta tesis se lleva a cabo un recorrido por un número importante de arquitecturas hardware y software que diferentes autores han propuesto para implementar P sistemas. Fundamentalmente, arquitecturas distribuidas, hardware dedicado basado en tarjetas FPGA y plataformas basadas en microcontroladores PIC. El objetivo es proponer soluciones que permitan implantar en dichas arquitecturas los resultados obtenidos del análisis estático (estados de utilidad y árboles de decisión para reglas activas). En líneas generales, se obtienen conclusiones positivas, en el sentido de que dichas optimizaciones se integran adecuadamente en las arquitecturas sin penalizaciones significativas. Summary Membrane computing is the focus of this doctoral thesis. It can be considered a bio-inspired computing type. Specifically, it is based on living cells, in which many reactions take place simultaneously. From cell structure and operation, many different formal models have been defined, named P systems. These models do not try to model the biological behavior of the cell, but they abstract the basic principles of the cell in order to find out new computational paradigms. P systems are non-deterministic and massively parallel computational models. This is why, they have aroused interest when dealing with complex problems nowadays. In many cases, they manage to solve in theory NP problems in polynomial or lineal time. On the other hand, it is important to note that membrane computing has been successfully applied in many researching areas, specially related to biology. Nowadays, lots of these computing models have been sufficiently characterized from a theoretical point of view. However, the way in which they can be implemented is a research challenge, that it is still open nowadays. There are some lines in this way, based on distributed architectures or dedicated hardware. All of them are trying to approach to its non-deterministic and parallel character as much as possible, taking into account viability and efficiency. In this doctoral thesis it is proposed carrying out a static analysis of the P system in order to optimize its performance in a computing platform. The general idea is that after data are collected in analysis time, they are used for getting a suitable configuration of the computing platform in which P system is going to be performed. As a consequence, the system throughput will improve. Specifically, this thesis has made use of Transition P systems for carrying out the study in static analysis. In particular, the static analysis proposed in this doctoral thesis tries to achieve that every membrane can efficiently determine its active rules in every evolution step. These rules are the ones that can be applied depending on the system configuration at each computational step. In this line, we are going to tackle the problem of the usefulness states for a membrane. This state will allow this membrane to know the set of membranes with which communication is possible at any time. This is a very important issue in determining the set of rules that can be applied. Moreover, static analysis in this thesis is carried out taking into account other properties such as membrane structure, rule antecedents, rule consequents and priorities among rules. After collecting all data in analysis time, they are arranged in a decision tree structure, enabling membranes to obtain the set of active rules as efficiently as possible in run-time system. On the other hand, in this doctoral thesis is going to carry out an overview of hardware and software architectures, proposed by different authors in order to implement P systems, such as distributed architectures, dedicated hardware based on PFGA, and computing platforms based on PIC microcontrollers. The aim of this overview is to propose solutions for implementing the results of the static analysis, that is, usefulness states and decision trees for active rules. In general, conclusions are satisfactory, because these optimizations can be properly integrated in most of the architectures without significant penalties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los sensores inerciales (acelerómetros y giróscopos) se han ido introduciendo poco a poco en dispositivos que usamos en nuestra vida diaria gracias a su minituarización. Hoy en día todos los smartphones contienen como mínimo un acelerómetro y un magnetómetro, siendo complementados en losmás modernos por giróscopos y barómetros. Esto, unido a la proliferación de los smartphones ha hecho viable el diseño de sistemas basados en las medidas de sensores que el usuario lleva colocados en alguna parte del cuerpo (que en un futuro estarán contenidos en tejidos inteligentes) o los integrados en su móvil. El papel de estos sensores se ha convertido en fundamental para el desarrollo de aplicaciones contextuales y de inteligencia ambiental. Algunos ejemplos son el control de los ejercicios de rehabilitación o la oferta de información referente al sitio turístico que se está visitando. El trabajo de esta tesis contribuye a explorar las posibilidades que ofrecen los sensores inerciales para el apoyo a la detección de actividad y la mejora de la precisión de servicios de localización para peatones. En lo referente al reconocimiento de la actividad que desarrolla un usuario, se ha explorado el uso de los sensores integrados en los dispositivos móviles de última generación (luz y proximidad, acelerómetro, giróscopo y magnetómetro). Las actividades objetivo son conocidas como ‘atómicas’ (andar a distintas velocidades, estar de pie, correr, estar sentado), esto es, actividades que constituyen unidades de actividades más complejas como pueden ser lavar los platos o ir al trabajo. De este modo, se usan algoritmos de clasificación sencillos que puedan ser integrados en un móvil como el Naïve Bayes, Tablas y Árboles de Decisión. Además, se pretende igualmente detectar la posición en la que el usuario lleva el móvil, no sólo con el objetivo de utilizar esa información para elegir un clasificador entrenado sólo con datos recogidos en la posición correspondiente (estrategia que mejora los resultados de estimación de la actividad), sino también para la generación de un evento que puede producir la ejecución de una acción. Finalmente, el trabajo incluye un análisis de las prestaciones de la clasificación variando el tipo de parámetros y el número de sensores usados y teniendo en cuenta no sólo la precisión de la clasificación sino también la carga computacional. Por otra parte, se ha propuesto un algoritmo basado en la cuenta de pasos utilizando informaiii ción proveniente de un acelerómetro colocado en el pie del usuario. El objetivo final es detectar la actividad que el usuario está haciendo junto con la estimación aproximada de la distancia recorrida. El algoritmo de cuenta pasos se basa en la detección de máximos y mínimos usando ventanas temporales y umbrales sin requerir información específica del usuario. El ámbito de seguimiento de peatones en interiores es interesante por la falta de un estándar de localización en este tipo de entornos. Se ha diseñado un filtro extendido de Kalman centralizado y ligeramente acoplado para fusionar la información medida por un acelerómetro colocado en el pie del usuario con medidas de posición. Se han aplicado también diferentes técnicas de corrección de errores como las de velocidad cero que se basan en la detección de los instantes en los que el pie está apoyado en el suelo. Los resultados han sido obtenidos en entornos interiores usando las posiciones estimadas por un sistema de triangulación basado en la medida de la potencia recibida (RSS) y GPS en exteriores. Finalmente, se han implementado algunas aplicaciones que prueban la utilidad del trabajo desarrollado. En primer lugar se ha considerado una aplicación de monitorización de actividad que proporciona al usuario información sobre el nivel de actividad que realiza durante un período de tiempo. El objetivo final es favorecer el cambio de comportamientos sedentarios, consiguiendo hábitos saludables. Se han desarrollado dos versiones de esta aplicación. En el primer caso se ha integrado el algoritmo de cuenta pasos en una plataforma OSGi móvil adquiriendo los datos de un acelerómetro Bluetooth colocado en el pie. En el segundo caso se ha creado la misma aplicación utilizando las implementaciones de los clasificadores en un dispositivo Android. Por otro lado, se ha planteado el diseño de una aplicación para la creación automática de un diario de viaje a partir de la detección de eventos importantes. Esta aplicación toma como entrada la información procedente de la estimación de actividad y de localización además de información almacenada en bases de datos abiertas (fotos, información sobre sitios) e información sobre sensores reales y virtuales (agenda, cámara, etc.) del móvil. Abstract Inertial sensors (accelerometers and gyroscopes) have been gradually embedded in the devices that people use in their daily lives thanks to their miniaturization. Nowadays all smartphones have at least one embedded magnetometer and accelerometer, containing the most upto- date ones gyroscopes and barometers. This issue, together with the fact that the penetration of smartphones is growing steadily, has made possible the design of systems that rely on the information gathered by wearable sensors (in the future contained in smart textiles) or inertial sensors embedded in a smartphone. The role of these sensors has become key to the development of context-aware and ambient intelligent applications. Some examples are the performance of rehabilitation exercises, the provision of information related to the place that the user is visiting or the interaction with objects by gesture recognition. The work of this thesis contributes to explore to which extent this kind of sensors can be useful to support activity recognition and pedestrian tracking, which have been proven to be essential for these applications. Regarding the recognition of the activity that a user performs, the use of sensors embedded in a smartphone (proximity and light sensors, gyroscopes, magnetometers and accelerometers) has been explored. The activities that are detected belong to the group of the ones known as ‘atomic’ activities (e.g. walking at different paces, running, standing), that is, activities or movements that are part of more complex activities such as doing the dishes or commuting. Simple, wellknown classifiers that can run embedded in a smartphone have been tested, such as Naïve Bayes, Decision Tables and Trees. In addition to this, another aim is to estimate the on-body position in which the user is carrying the mobile phone. The objective is not only to choose a classifier that has been trained with the corresponding data in order to enhance the classification but also to start actions. Finally, the performance of the different classifiers is analysed, taking into consideration different features and number of sensors. The computational and memory load of the classifiers is also measured. On the other hand, an algorithm based on step counting has been proposed. The acceleration information is provided by an accelerometer placed on the foot. The aim is to detect the activity that the user is performing together with the estimation of the distance covered. The step counting strategy is based on detecting minima and its corresponding maxima. Although the counting strategy is not innovative (it includes time windows and amplitude thresholds to prevent under or overestimation) no user-specific information is required. The field of pedestrian tracking is crucial due to the lack of a localization standard for this kind of environments. A loosely-coupled centralized Extended Kalman Filter has been proposed to perform the fusion of inertial and position measurements. Zero velocity updates have been applied whenever the foot is detected to be placed on the ground. The results have been obtained in indoor environments using a triangulation algorithm based on RSS measurements and GPS outdoors. Finally, some applications have been designed to test the usefulness of the work. The first one is called the ‘Activity Monitor’ whose aim is to prevent sedentary behaviours and to modify habits to achieve desired objectives of activity level. Two different versions of the application have been implemented. The first one uses the activity estimation based on the step counting algorithm, which has been integrated in an OSGi mobile framework acquiring the data from a Bluetooth accelerometer placed on the foot of the individual. The second one uses activity classifiers embedded in an Android smartphone. On the other hand, the design of a ‘Travel Logbook’ has been planned. The input of this application is the information provided by the activity and localization modules, external databases (e.g. pictures, points of interest, weather) and mobile embedded and virtual sensors (agenda, camera, etc.). The aim is to detect important events in the journey and gather the information necessary to store it as a journal page.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La falta de información es un escenario más que habitual en la utilización de conjuntos de datos. En las aplicaciones del mundo real existen múltiples causas – errores o fallos de los sensores cuando se trabaja con equipos automáticos, desconocimiento o falta de interés por parte de los responsables de introducir la información, negativas por parte de los informantes a responder a preguntas sobre temas comprometidos en encuestas … – que pueden originarlo. Como consecuencia de ello, el procesamiento de los valores ausentes es, en la práctica, uno de los trabajos que más tiempo consumen en los proyectos de minería de datos y aprendizaje automático [109] y se estima que alrededor del 60% de los esfuerzos se destinan al mismo [23]. Aunque la ausencia puede producirse en cualquier tipo de datos, sean éstos numéricos o categóricos, nos vamos a centrar en los últimos a causa de algunas peculiaridades que merece la pena estudiar. Y hablaremos indistintamente de ausencia de información, valores ausentes, falta de respuesta, datos parcialmente observados o falta de datos, pues en cualquiera de estas formas aparece citado el problema. Las técnicas para afrontarlo se vienen desarrollando ya desde hace tiempo [135], [6] y existen numerosas referencias en la literatura, sobre todo acerca de la falta de respuesta 6 en encuestas [32], [79]. Sin embargo, en el ámbito del aprendizaje automático es en los últimos años cuando se ha convertido en un área de investigación dinámica, con frecuentes aportaciones [94]. Los dos puntos de vista, el estadístico y el del aprendizaje automático, consideran el problema en formas bien diferentes y tienen distintos objetivos, lo que origina, a su vez, discrepancias en la clasificación de las técnicas y en los criterios para su evaluación. Por un lado, el enfoque estadístico paramétrico tradicional considera el conjunto de datos como una muestra, resultado de la extracción aleatoria de una población con una distribución probabilística. Bajo este supuesto, el objetivo es obtener algunos de los parámetros que caracterizan esa distribución – la media, la moda, la correlación entre variables, etc. – calculándose los correspondientes estimadores como funciones de los datos de la muestra. La ausencia de datos es, aquí, un problema de estimación que se afronta desde diferentes perspectivas. Por su parte, en el ámbito de los procedimientos de aprendizaje automático existen múltiples técnicas que pueden utilizarse para tratar los datos ausentes mediante su sustitución por valores obtenidos a partir de los datos observados: redes neuronales, árboles de decisión, etc. Cuando los datos que faltan son categóricos, se pueden utilizar técnicas específicas como los procedimientos de clasificación: las categorías a asignar coinciden con los distintos valores posibles del atributo que tiene falta de información. Pueden utilizarse métodos supervisados y no supervisados. En el primer caso, cuando existe más de un atributo con falta de datos, el aprendizaje se realiza sucesiva y separadamente para cada uno, lo que significa que la tarea ha de repetirse tantas veces como atributos con valores ausentes hay en el conjunto de datos [72]. El inicio de los trabajos de esta tesis ha estado principalmente motivado en la necesidad de mejorar los resultados obtenidos al tratar de resolver problemas de falta de 7 información de variables categóricas en sondeos de opinión utilizando los procedimientos que la literatura considera como el estado del arte en ese ámbito. Se ha encontrado, así, que muchos de los métodos que se proponen tienen hipótesis de funcionamiento que están muy lejos de las situaciones reales que se encuentran en la práctica y, además, las soluciones existentes han avanzado frecuentemente en direcciones no adecuadas, sin replantear los fundamentos básicos. Esto ha conducido de una forma natural a probar métodos propios de otro ámbito como es el aprendizaje automático, para lo que ha sido necesario, en ocasiones, proponer modificaciones de algunos procedimientos ya existentes de modo que pudieran aceptar como entradas el tipo de datos que estos sondeos de opinión manejan. Como resultado, y en el caso concreto de un tipo específico de redes neuronales, se ha diseñado una nueva arquitectura y un nuevo algoritmo de funcionamiento que se presentan aquí como aportación más novedosa de este estudio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El comportamiento estructural de las presas de embalse es difícil de predecir con precisión. Los modelos numéricos para el cálculo estructural resuelven bien las ecuaciones de la mecánica de medios continuos, pero están sujetos a una gran incertidumbre en cuanto a la caracterización de los materiales, especialmente en lo que respecta a la cimentación. Así, es difícil discernir si un estado que se aleja en cierta medida de la normalidad supone o no una situación de riesgo estructural. Por el contrario, muchas de las presas en operación cuentan con un gran número de aparatos de auscultación, que registran la evolución de diversos indicadores como los movimientos, el caudal de filtración, o la presión intersticial, entre otros. Aunque hoy en día hay muchas presas con pocos datos observados, hay una tendencia clara hacia la instalación de un mayor número de aparatos que registran el comportamiento con mayor frecuencia [1]. Como consecuencia, se tiende a disponer de un volumen creciente de datos que reflejan el comportamiento de la presa. En la actualidad, estos datos suelen tratarse con métodos estadísticos para extraer información acerca de la relación entre variables, detectar anomalías y establecer umbrales de emergencia. El modelo general más común es el denominado HST (Hydrostatic-Season-Time), que calcula la predicción de una variable determinada de una presa a partir de una serie de funciones que tienen en cuenta los factores que teóricamente más influyen en la respuesta: la carga del embalse, el efecto térmico (en función de la época del año) y un término irreversible. Puntualmente se han aplicado modelos más complejos, en algunos casos introduciendo un número mayor de variables, como la precipitación [2], y en otros con otras expresiones como la función impulso-respuesta [3]. En otros campos de la ciencia, como la medicina o las telecomunicaciones el volumen de datos es mucho mayor, lo que ha motivado el desarrollo de numerosas herramientas para su tratamiento y para el desarrollo de modelos de predicción. Algunas de ellas, como las redes neuronales, ya han sido aplicadas al caso de la auscultación de presas [4], [5] con resultados prometedores. El trabajo que se presenta es una revisión de las herramientas disponibles en los campos de la minería de datos, inteligencia artificial y estadística avanzada, potencialmente útiles para el análisis de datos de auscultación. Se describen someramente, indicando sus ventajas e inconvenientes. Se presenta además el resultado de aplicar un modelo basado en bosques aleatorios [6] para la predicción del caudal de filtración en un caso piloto. Los bosques aleatorios están basados en los árboles de decisión [7], que son modelos que dividen el conjunto de datos observados en grupos de observaciones “similares”. Posteriormente, se ajusta un modelo sencillo (típicamente lineal, o incluso un valor constante) que se aplica a los nuevos casos pertenecientes a cada grupo.