232 resultados para ß-adrenoceptors
Resumo:
Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via beta(2)-adrenoceptor (beta(2)-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, alpha(2A)-AR and alpha(2C)-AR(alpha(2A)/alpha(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In alpha(2A)/alpha(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (mu CT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-kappa B (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial beta(2)-AR mRNA expression also was similar in KO and WT littermates, whereas alpha(2A)-, alpha(2B)- and alpha(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected alpha(2A)-, alpha(2B)-, alpha(2C)- and beta(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective alpha(2)-AR agonist clonidine and to the nonspecific alpha-AR antagonist phentolamine. These findings suggest that beta(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that alpha(2)-AR signaling also may mediate the SNS actions in the skeleton. (c) 2011 American Society for Bone and Mineral Research.
Resumo:
Some blockers of beta(1)- and beta(2)-adrenoceptors cause cardiostimulant effects through an atypical beta-adrenoceptor (putative beta(4)-adrenoceptor) that resembles the beta(3)-adrenoceptor. It is likely but not proven that the putative beta(4)-adrenoceptor is genetically distinct from the beta(3)-adrenoceptor. We therefore investigated whether or not the cardiac atypical beta-adrenoceptor could mediate agonist effects in mice lacking a functional beta(3)-adrenoceptor gene (beta(3)KO). (-)-CGP 12177, a beta(1)- and beta(2)-adrenoceptor blocker that causes agonist effects through both beta(3)-adrenoceptors and cardiac putative beta(4)-adrenoceptors, caused cardiostimulant effects that were not different in atria from wild-type (WT) mice and beta(3)KO mice. The effects of (-)-CGP 12177 were resistant to blockade by (-)-propranolol (200 nM) but were blocked by (-)-bupranolol (1 mu M) with an equilibrium dissociation constant of 15 nM in WT and 17 nM in beta(3)KO. (-)-[H-3]CGP 12177 labeled a similar density of the putative beta(4)-adrenoceptor in ventricular membranes from the hearts of both WT (B-max = 52 fmol/mg protein) and beta(3)KO (B-max = 53 fmol/mg protein) mice. The affinity of (-)-[H-3]CGP 12177 for the cardiac putative beta(4)-adrenoceptor was not different between WT (K-d = 46 nM) and beta(3)KO (K-d = 40 nM). These results provide definitive evidence that the cardiac putative beta(4)-adrenoceptor is distinct from the beta(3)-adrenoceptor.
Resumo:
The role of beta(3)- and other putative atypical beta-adrenaceptors in human white adipocytes and right atrial appendage has been investigated using CGP 12177 and novel phenylethanolamine and aryloxypropanolamine beta(3)-adrenoceptor (beta(3)AR) agonists with varying intrinsic activities and selectivities for human cloned PAR subtypes. The ability to demonstrate beta(1/2)AR antagonist-insensitive (beta(3) or other atypical beta AR-mediated) responses to CGP 12177 was critically dependent on the albumin batch used to prepare and incubate the adipocytes. Four aryloxypropanolamine selective beta(3)AR agonists (SB-226552, SB-229432, SB-236923, SB-246982) consistently elicited beta(1/2)AR antagonist-insensitive lipolysis. However, a phenylethanolamine (SB-220646) that was a selective full beta(3)AR agonist elicited full lipolytic and inotropic responses that were sensitive to beta(1/2)AR antagonism, despite it having very low efficacies at cloned beta(1)- and beta(2)ARs. A component of the response to another phenylethanolamine selective beta(3)AR agonist (SB-215691) was insensitive to beta(1/2)AR antagonism in some experiments. Because novel aryloxypropanolamine had a beta(1/2)AR antagonist-insensitive inotropic effect, these results establish more firmly that beta(3)ARs mediate lipolysis in human white adipocytes, and suggest that putative 'beta(4)ARs' mediate inotropic responses to CGP 12177. The results also illustrate the difficulty of predicting from studies on cloned beta ARs which beta ARs will mediate responses to agonists in tissues that have a high number of beta(1)- and beta(2)ARs or a low number of beta(3)ARs.
Resumo:
1 We identified putative beta(4)-adrenoceptors by radioligand binding, measured increases in ventricular contractile force by (-)-CGP 12177 and (+/-)-cyanopindolol and demonstrated increased Ca2+ transients by (-)-CGP 12177 in rat cardiomyocytes. 2 (-)-[H-3]-CGP 12177 labelled 13-22 fmol mg(-1) protein ventricular beta(1), beta(2)-adrenoceptors (pK(D) similar to 9.0) and 50-90 fmol mg(-1) protein putative beta(4)-adrenoceptors (pK(D) similar to 7.3). The affinity values (PKi) for (beta(1),beta(2)-) and putative beta(4)-adrenoceptors, estimated from binding inhibition, were (-)-propranolol 8.4, 5.7; (-)-bupranolol 9.7, 5.8; (+/-)-cyanopindolol 10.0,7.4. 3 In left ventricular papillary muscle, in the presence of 30 mu M 3-isobutyl-1-methylxanthine, (-)CGP 12177 and (+/-)-cyanopindolol caused positive inotropic effects, (pEC(50) (-)-CGP 12177, 7.6; (+/-)-cyanopindolol, 7.0) which were antagonized by (-)-bupranolol (pK(B) 6.7-7.0) and (-)-CGP 20712A (pK(B) 6.3-6.6). The cardiostimulant effects of(-)-CGP 12177 in papillary muscle, left and right atrium were antagonized by (+/-)-cyanopindolol (pK(i), 7.0-7.4). 4 (-)-CGP 12177 (1 mu M) in the presence of 200 nM (-)-propranolol increased Ca2+ transient amplitude by 56% in atrial myocytes, but only caused a marginal increase in ventricular myocytes. In the presence of 1 mu M 3-isobutyl-1-methylxanthine and 200 nM (-)-propranolol, 1 mu M (-)-CGP 12177 caused a 73% increase in Ca2+ transient amplitude in ventricular myocytes. (-)-CGP 12177 elicited arrhythmic transients in some atrial and ventricular myocytes. 5 Probably by preventing cyclic AMP hydrolysis, 3-isobutyl-1-methylxanthine facilitates the inotropic function of ventricular putative beta(4)-adrenoceptors. suggesting coupling to G(s) protein-adenylyl cyclase. The receptor-mediated increases in contractile force are related to increases of Ca2+ in atrial and ventricular myocytes. The agreement of binding affinities of agonists with cardiostimulant potencies is consistent with mediation through putative beta(4)-adrenoceptors labelled with (-)-[H-3]-CGP 12177.
Resumo:
1 Chronic treatment of patients with beta-blockers causes atrial inotropic hyperresponsiveness through beta(2)-adrenoceptors, 5-HT4 receptors and H-2-receptors but apparently not through beta(1)-adrenoceptors despite data claiming an increased beta(1)-adrenoceptor density from homogenate binding studies. We have addressed the question of beta(1)-adrenoceptor sensitivity by determining the inotropic potency and intrinsic activity of the beta(1)-adrenoceptor selective partial agonist (-)-RO363 and by carrying out both homogenate binding and quantitative beta-adrenoceptor autoradiography in atria obtained from patients treated or not treated with beta-blockers. In the course of the experiments it became apparent that (-)-RO363 also may cause agonistic effects through the third atrial beta-adrenoceptor. To assess whether (-)-RO363 also caused agonistic effects through beta(3)-adrenoceptors we studied its relaxant effects in rat colon and guinea-pig ileum, as well as receptor binding and adenylyl cyclase stimulation of chinese hamster ovary (CHO) cells expressing human beta(3)-adrenoceptors. 2 beta-Adrenoceptors were labelled with (-)-[I-125]-cyanopindolol. The density of both beta(1)- and beta(2)-adrenoceptors was unchanged in the 2 groups, as assessed with both quantitative receptor autoradiography and homogenate binding. The affinities of (-)-RO363 for beta(1)-adrenoceptors (pK(i) = 8.0-7.7) and beta(2)-adrenoceptors (pK(i) = 6.1-5.8) were not significantly different in the two groups. 3 (-)-RO363 increased atrial force with a pEC(50) of 8.2 (beta-blocker treated) and 8.0 (non-beta-blocker treated) and intrinsic activity with respect to (-)-isoprenaline of 0.80 (beta-blocker treated) and 0.54 (non-beta-blocker treated) (P<0.001) and with respect to Ca2+ (7 mM) of 0.65 (beta-blocker treated) and 0.45 (non-beta-blocker treated) (P<0.01). The effects of (-)-RO363 were resistant to antagonism by the beta(2)-adrenoceptor antagonist, ICI 118,551 (50 nM). The effects of 0.3-10 nM (-)-RO363 were antagonized by 3-10 nM of the beta(1)-adrenoceptor selective antagonist CGP 20712A. The effects of 20-1000 nM (-)-RO363 were partially resistant to antagonism by 30-300 nM CGP 20712A. 4 (-)-RO363 relaxed the rat colon, partially precontracted by 30 mM KCl, with an intrinsic activity of 0.97 compared to (-)-isoprenaline. The concentration-effect curve to (-)-RO363 revealed 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.5 and fraction 0.66, the other resistant to (-)-propranolol (200 nM) with pEC(50)=5.6 and fraction 0.34 of maximal relaxation. 5 (-)-RO363 relaxed the longitudinal muscle of guinea-pig ileum, precontracted by 0.5 mu M histamine, with intrinsic activity of 1.0 compared to (-)-isoprenaline and through 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.7 and fraction 0.67, the other resistant to (-)-propranolol with pEC(50)=4.9 and fraction 0.33 of maximal relaxation. 6 (-)-RO363 stimulated the adenylyl cyclase of CHO cells expressing human beta(3)-adrenoceptors with pEC(50)=5.5 and intrinsic activity 0.74 with respect to (-)-isoprenaline (pEC(50)=5.9). (-)-RO363 competed for binding with [I-125]cyanopindolol at human beta(3)-adrenoceptors transfected into CHO cells with pK(i)=4.5. (-)-Isoprenaline (pk(i)=5.2) and (-)-CGP 12177A (pK(i)=6.1) also competed for binding at human beta(2)-adrenoceptors. 7 We conclude that under conditions used in this study, (-)-RO363 is a potent partial agonist for human beta(1)- and beta(3)-adrenoceptors and appears also to activate the third human atrial beta-adrenoceptor. (-)-RO363 relaxes mammalian gut through both beta(1)- and beta(3)-adrenoceptors. (-)-RO363, used as a beta(1)-adrenoceptor selective tool, confirms previous findings with (-)-noradrenaline that beta(1)-adrenoceptor mediated atrial effects are only slightly enhanced by chronic treatment of patients with beta-blockers. Chronic treatment with beta(1)-adrenoceptor-selective blockers does not significantly increase the density of human atrial beta(1)- and beta(2)-adrenoceptors.
Resumo:
Background and purpose: Control of food intake is a complex behaviour which involves many interconnected brain structures. The present work assessed if the noradrenergic system in the lateral septum (LS) was involved in the feeding behaviour of rats. Experimental approach: In the first protocol, the food intake of rats was measured. Then non-food-deprived animals received either 100 nL of 21 nmol of noradrenaline or vehicle unilaterally in the LS 10 min after local 10 nmol of WB4101, an alpha(1)-adrenoceptor antagonist, or vehicle. In the second protocol, different doses of WB4101 (1, 10 or 20 nmol in 100 nL) were microinjected bilaterally into the LS of rats, deprived of food for 18 h and food intake was compared to that of satiated animals. Key results: One-sided microinjection of noradrenaline into the LS of normal-fed rats evoked food intake, compared with vehicle-injected control animals, which was significantly reduced by alpha(1)-adrenoceptor antagonism. In a further investigation, food intake was significantly higher in food-deprived animals, compared to satiated controls. Pretreatment of the LS with WB4101 reduced food intake in only food-deprived animals in a dose-related manner, suggesting that the LS noradrenergic system was involved in the control of food intake. Conclusion and implications: Activation by local microinjection of noradrenaline of alpha(1)-adrenoceptors in the LS evoked food intake behaviour in rats. In addition, blockade of the LS alpha(1)-adrenoceptors inhibited food intake in food-deprived animals, suggesting that the LS noradrenergic system modulated food intake behaviour and satiation.
Resumo:
Background and purpose: We have previously shown that noradrenaline microinjected into the bed nucleus of stria terminalis (BST) elicited pressor and bradycardiac responses in unanaesthetized rats. In the present study, we investigated the subtype of adrenoceptors that mediates the cardiovascular response to noradrenaline microinjection into the BST. Experimental approach: Cardiovascular responses following noradrenaline microinjection into the BST of male Wistar rats were studied before and after BST pretreatment with different doses of the selective alpha(1)-adrenoceptor antagonist WB4101, the alpha(2)-adrenoceptor antagonist RX821002, the combination of WB4101 and RX821002, the non-selective beta-adrenoceptor antagonist propranolol, the selective beta(1)-adrenoceptor antagonist CGP20712 or the selective beta(2)-adrenoceptor antagonist ICI118,551. Key results: Noradrenaline microinjected into the BST of unanaesthetized rats caused pressor and bradycardiac responses. Pretreatment of the BST with different doses of either WB4101 or RX821002 only partially reduced the response to noradrenaline. However, the response to noradrenaline was blocked when WB4101 and RX821002 were combined. Pretreatment with this combination also shifted the resulting dose-effect curve to the left, clearly showing a potentiating effect of this antagonist combination. Pretreatment with different doses of either propranolol or CGP20712 increased the cardiovascular responses to noradrenaline microinjected into the BST. Pretreatment with ICI118,551 did not affect cardiovascular responses to noradrenaline. Conclusion and implications: The present results indicate that alpha(1) and alpha(2)-adrenoceptors mediate the cardiovascular responses to noradrenaline microinjected into the BST. In addition, they point to an inhibitory role played by the activation of local beta(1)-adrenoceptors in the cardiovascular response to noradrenaline microinjected into the BST.
Resumo:
Dynamic exercise evokes sustained blood pressure and heart rate (HR) increases. Although it is well accepted that there is a CNS mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is still limited. The bed nucleus of the stria terminalis (BST) is involved in exercise-evoked cardiovascular responses in rats. However, the specific neurotransmitter involved in BST-related modulation of cardiovascular responses to dynamic exercise is still unclear. In the present study, we investigated the role of local BST adrenoceptors in the cardiovascular responses evoked when rats are submitted to an acute bout of exercise on a rodent treadmill. We observed that bilateral microinjection of the selective alpha 1-adrenoceptor antagonist WB4101 into the BST enhanced the HR increase evoked by dynamic exercise without affecting the mean arterial pressure (MAP) increase. Bilateral microinjection of the selective alpha 2-adrenoceptor antagonist RX821002 reduced exercise-evoked pressor response without changing the tachycardiac response. BST pretreatment with the nonselective beta-adrenoceptor antagonist propranolol did not affect exercise-related cardiovascular responses. BST treatment with either WB4101 or RX821002 did not affect motor performance in the open-field test, which indicates that effects of BST adrenoceptor antagonism in exercise-evoked cardiovascular responses were not due to changes in motor activity. The present findings are the first evidence showing the involvement of CNS adrenoceptors in cardiovascular responses during dynamic exercise. Our results indicate an inhibitory influence of BST alpha 1-adrenoceptor on the exercise-evoked HR response. Data also point to a facilitatory role played by the activation of BST alpha 2-adrenoceptor on the pressor response to dynamic exercise. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The insular cortex (IC) has been reported to modulate the cardiac parasympathetic activity of the baroreflex in unanesthetized rats. However, which neurotransmitters are involved in this modulation is still unclear. In the present study, we evaluated the possible involvement of local IC-noradrenergic neurotransmission in modulating reflex bradycardiac responses. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL), into the IC of male Wistar rats, increased the gain of reflex bradycardia in response to mean arterial pressure (MAP) increases evoked by intravenous infusion of phenylephrine. However, bilateral microinjection of equimolar doses of either the selective alpha(2)-adrenoceptor antagonist RX821002 or the non-selective beta-adrenoceptor antagonist propranolol into the IC did not affect the baroreflex response. No effects were observed in basal MAP or heart rate values after bilateral microinjection of noradrenergic antagonists into the IC, thus suggesting no tonic influence of IC-noradrenergic neurotransmission on resting cardiovascular parameters. In conclusion, these data provide evidence that local IC-noradrenergic neurotransmission has an inhibitory influence on baroreflex responses to blood pressure increase evoked by phenylephrine infusion through activation of alpha(1)-adrenoceptors. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Some beta (1)- and beta (2)-adrenoceptor-blocking agents, such as (-)-CGP 12177, cause cardiostimulant effects at concentrations considerably higher than those that antagonise the effects of catecholamines. The cardiostimulant effects of these non-conventional partial agonists are relatively resistant to blockade by (-)-propranolol and have been proposed to be mediated through putative beta (4)-adrenoceptors or through atypical states of either beta (1)- or beta (2)-adrenoceptors. We investigated the effects of (-)-CGP 12177 on sinoatrial rate and left atrial contractile force as well as the ventricular binding of (-)-[H-3]CGP 12177 in tissues from wild-type, beta (2)-adrenoceptor knockout and beta (1)/beta (2)-adrenoceptor double knockout mice. The cardiostimulant effects of (-)-CGP 12177 were present in wildtype and beta (2)-adrenoceptor knockout mice but were absent in beta (1)/beta (2)-adrenoceptor double knockout mice. Thus, the presence of beta (1)-adrenoceptors is obligatory for the cardiostimulant effects of (-)-CGP 12177. It appears therefore that an atypical state of the beta (1)-adrenoceptor contributes to the mediation of the cardiostimulant effects induced by non-conventional partial agonists. Ventricular beta (1)- and beta (2)-adrenoceptors, labelled in wild-type with a K(D)similar to0.5 nmol/l (similar to 16 fmol/mg protein), were absent in beta (1)/beta (2)-adrenoceptor double knockout mice. However, a high density binding site (similar to 154-391 fmol/mg protein) that did not saturate completely (K(D)similar to 80-200 nM) was labelled by (-)-[H-3]CGP 12177 in the three groups of mice, being distinct from beta (1)- and beta (2)-adrenoceptors, as well as from the site mediating the agonist effects of(-)-CGP 12177.
Resumo:
1 The functional coupling of B-2-adrenoceptors (beta (2)-ARs) to murine L-type Ca2+ current (I-Ca(L)) was investigated with two different approaches. The beta (2)-AR signalling cascade was activated either with the beta (2)-AR selective agonist zinterol (myocytes from wild-type mice), or by spontaneously active, unoccupied beta (2)-ARs (myocytes from TG4 mice with 435 fold overexpression of human beta (2)-ARs). Ca2+ and Ba2+ currents were recorded in the whole-cell and cell-attached configuration of the patch- clamp technique, respectively. 2 Zinterol (10 muM) significantly increased I-Ca(L) amplitude of wild-type myocytes by 19+/-5%, and this effect was markedly enhanced after inactivation of Gi-proteins with pertussis-toxin (PTX; 76+/-13% increase). However, the effect of zinterol was entirely mediated by the beta (1)-AR subtype, since it was blocked by the beta (1)-AR selective antagonist CGP 20712A (300 nM). The beta (2)-AR selective antagonist ICI 118,551 (50 nM) did not affect the response of I-Ca(L) to zinterol. 3 In myocytes with beta (2)-AR overexpression I-Ca(L) was not stimulated by the activated signalling cascade. On the contrary, I-Ca(L) was lower in TG4 myocytes and a significant reduction of single-channel activity was identified as a reason for the lower whole-cell I-Ca(L). The beta (2)-AR inverse agonist ICI 118,551 did not further decrease I-Ca(L). PTX-treatment increased current amplitude to values found in control myocytes. 4 In conclusion, there is no evidence for beta (2)-AR mediated increases of I-Ca(L) in wild-type mouse ventricular myocytes. Inactivation of Gi-proteins does not unmask beta (2)-AR responses to zinterol, but augments beta (1)-AR mediated increases of I-Ca(L). In the mouse model of beta (2)-AR overexpression I-Ca(L) is reduced due to tonic activation of Gi-proteins.
Resumo:
There is a small increase in the functional beta(2)-adrenoceptor response on the spontaneously hypertensive rat (SHR) left atrium in the early stages of hypertension. In the present study, the functional beta(1)- and beta(2)-adrenoceptors of the left and right atrium in SHR pre-hypertension and age-matched (5-week-old) Wistar Kyoto (WKY) rats were characterized. Contractility methods with isoprenaline, T-0509 (a selective beta(1)-adrenoceptor agonist) and procaterol (a selective beta(2)-adrenoceptor agonist) were used. At 5 weeks, the SHRs were pre-hypertensive. Isoprenaline was more potent on the left atrium of 5-week-old SHRs than WKY rats. Bisoprolol, a selective beta(1)-adrenoceptor antagonist, was more potent against isoprenaline and T-0509 on the SHR than WKY rat left atrium. ICI 118,551, a selective beta(2)-adrenoceptor antagonist, was more potent against procaterol and T-0509 on the SHR than WKY rat left atrium. The results with bisoprolol and ICI 118,551 suggest that there are more functional beta(1)- and beta(2)-adrenoceptors on the left atrium of 5-week-old SHRs than WKY rats. Isoprenaline, T-0509 and procaterol were equipotent on the right atrium of 5-week-old WKY rats and SHRs. Bisoprolol was more potent against isoprenaline, T-0509 and procaterol on the SHR than WKY rat right atrium. ICI 118,551 was more potent against T-0509, but not isoprenaline and procaterol, on the SHR than WKY rat left atrium. This suggests there are more functional beta(1)-adrenoceptors, and probably more functional beta(2)-adrenoceptors, on the right atrium of 5-week-old SHRs than WKY rats. These functional differences in beta(1)-and beta(2)-adrenoceptor-mediated responses of the left and right atria of pre-hypertensive SHRs cannot be caused by hypertension, and may be associated with the onset of hypertension.