974 resultados para États cohérents et comprimés généralisés


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pour décrire les vibrations à l'intérieur des molécules diatomiques, le potentiel de Morse est une meilleure approximation que le système de l'oscillateur harmonique. Ainsi, en se basant sur la définition des états cohérents et comprimés donnée dans le cadre du problème de l'oscillateur harmonique, la première partie de ce travail suggère une construction des états cohérents et comprimés pour le potentiel de Morse. Deux types d’états seront construits et leurs différentes propriétés seront étudiées en portant une attention particulière aux trajectoires et aux dispersions afin de confirmer la quasi-classicité de ces états. La deuxième partie de ce travail propose d'insérer ces deux types d’états cohérents et comprimés de Morse dans un miroir semi-transparent afin d'introduire un nouveau moyen de créer de l'intrication. Cette intrication sera mesurée à l’aide de l’entropie linéaire et nous étudierons la dépendance par rapport aux paramètres de cohérence et de compression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse est divisée en cinq parties portant sur les thèmes suivants: l’interprétation physique et algébrique de familles de fonctions orthogonales multivariées et leurs applications, les systèmes quantiques superintégrables en deux et trois dimensions faisant intervenir des opérateurs de réflexion, la caractérisation de familles de polynômes orthogonaux appartenant au tableau de Bannai-Ito et l’examen des structures algébriques qui leurs sont associées, l’étude de la relation entre le recouplage de représentations irréductibles d’algèbres et de superalgèbres et les systèmes superintégrables, ainsi que l’interprétation algébrique de familles de polynômes multi-orthogonaux matriciels. Dans la première partie, on développe l’interprétation physico-algébrique des familles de polynômes orthogonaux multivariés de Krawtchouk, de Meixner et de Charlier en tant qu’éléments de matrice des représentations unitaires des groupes SO(d+1), SO(d,1) et E(d) sur les états d’oscillateurs. On détermine les amplitudes de transition entre les états de l’oscillateur singulier associés aux bases cartésienne et polysphérique en termes des polynômes multivariés de Hahn. On examine les coefficients 9j de su(1,1) par le biais du système superintégrable générique sur la 3-sphère. On caractérise les polynômes de q-Krawtchouk comme éléments de matrices des «q-rotations» de U_q(sl_2). On conçoit un réseau de spin bidimensionnel qui permet le transfert parfait d’états quantiques à l’aide des polynômes de Krawtchouk à deux variables et on construit un modèle discret de l’oscillateur quantique dans le plan à l’aide des polynômes de Meixner bivariés. Dans la seconde partie, on étudie les systèmes superintégrables de type Dunkl, qui font intervenir des opérateurs de réflexion. On examine l’oscillateur de Dunkl en deux et trois dimensions, l’oscillateur singulier de Dunkl dans le plan et le système générique sur la 2-sphère avec réflexions. On démontre la superintégrabilité de chacun de ces systèmes. On obtient leurs constantes du mouvement, on détermine leurs algèbres de symétrie et leurs représentations, on donne leurs solutions exactes et on détaille leurs liens avec les polynômes orthogonaux du tableau de Bannai-Ito. Dans la troisième partie, on caractérise deux familles de polynômes du tableau de Bannai-Ito: les polynômes de Bannai-Ito complémentaires et les polynômes de Chihara. On montre également que les polynômes de Bannai-Ito sont les coefficients de Racah de la superalgèbre osp(1,2). On détermine l’algèbre de symétrie des polynômes duaux -1 de Hahn dans le cadre du problème de Clebsch-Gordan de osp(1,2). On propose une q - généralisation des polynômes de Bannai-Ito en examinant le problème de Racah pour la superalgèbre quantique osp_q(1,2). Finalement, on montre que la q -algèbre de Bannai-Ito sert d’algèbre de covariance à osp_q(1,2). Dans la quatrième partie, on détermine le lien entre le recouplage de représentations des algèbres su(1,1) et osp(1,2) et les systèmes superintégrables du deuxième ordre avec ou sans réflexions. On étudie également les représentations des algèbres de Racah-Wilson et de Bannai-Ito. On montre aussi que l’algèbre de Racah-Wilson sert d’algèbre de covariance quadratique à l’algèbre de Lie sl(2). Dans la cinquième partie, on construit deux familles explicites de polynômes d-orthogonaux basées sur su(2). On étudie les états cohérents et comprimés de l’oscillateur fini et on caractérise une famille de polynômes multi-orthogonaux matriciels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les espaces politiques infranationaux définissent et prennent en charge un nombre croissant de problèmes publics. Quelle est la capacité des acteurs et institutions locales à faire émerger une action publique autonome ? Assiste-t-on à la fin d'un cycle ou à une nouvelle transformation des relations entre l'Etat et le local ? Quelles sont les limites de la capacité du politique à organiser les territoires ? Les collectivités locales favorisent-elles de nouvelles impulsions démocratiques ? Cette volonté de croiser les regards - disciplinaires, géographiques et générationnels - permet aux auteurs de souligner l'étendue du travail de construction de la comparabilité en sciences sociales. L'enjeu scientifique n'est plus de trancher entre centralisation et décentralisation mais bien de développer des outils et des cadres d'analyse heuristiques pour penser les effets des nouvelles interdépendances. L'ouvrage nous invite aussi à poser différemment la question sensible du rapport des individus à l'Etat et au pouvoir politique dans chaque contexte local , à questionner les ressorts démocratiques de l'action publique au coeur de chaque métropole et de chaque région.