144 resultados para ÂMBAR
Review of American fossil phlebotominae (Diptera: Psychodidae) with a description of two new species
Resumo:
The objective of this study was to carry out a taxonomic review of fossil American phlebotomine sand flies and describe two new species found in amber in the Dominican Republic. The gonostyle of one of these, Micropygomyia dorafeliciangeliae nov. sp., (=Lutzomyia dorafeliciangeliae, species group oswaldoi), has five spines, similar to that of Micropygomyia paterna (Quate, 1963) (= Lutzomyia paterna, species group oswaldoi), but they may be distinguished by the alpha/gamma ratio, which is <1.0 in the new species and >1 in the latter. Pintomyia dominicana nov. sp. (=Lutzomyia dominicana, species group verrucarum) has four spines on the gonostyle and presents a long bristle on the apex of the paramere, which distinguishes it from the other fossil species. With the description of these two new species, a total of 14 species of the American fossil phlebotomine sand flies has been described, 10 of which belong to the genus Pintomyia. An identification key for male fossil species is presented
Resumo:
Imatinib (IMAT) is a tyrosine kinase inhibitor that has been used for the treatment of chronic myeloid leukemia (CML). Despite the efficacy of IMAT therapy, some cases of treatment resistance have been described in CML. Developing a plasma method is important since there are several studies that provided a higher correlation between IMAT plasma concentration and response to treatment. Therefore, in this investigation we validated a method by CE as an alternative, new, simple and fast electrophoretic method for IMAT determination in human plasma. The analysis was performed using a fused silica capillary (50 mm id x 46.5 cm total length, 38.0 cm effective length); 50 mmol/L sodium phosphate buffer, pH 2.5, as BGE; hydrodynamic injection time of 20 s (50 mbar); voltage of 30 kV; capillary temperature of 35 degrees C and detection at 200 nm. Plasma samples pre-treatment involved liquid-liquid extraction with methyl-tert-butyl ether as the extracting solvent. The method was linear from 0.125 to 5.00 mg/mL. The LOQ was 0.125 mg/mL. Mean absolute recovery of IMAT was 67%. The method showed to be precise and accurate with RSD and relative error values lower than 15%. Furthermore, the application of the method was performed in the analysis of plasma samples from CML patients undergoing treatment with IMAT.
Resumo:
Thin film solar cells based on Cu(In,Ga)Se2 as an absorber layer use Mo as the back contact. This metal is widely used in research and in industry but despite this, there are only a few published studies on the properties of Mo. Properties such as low resistivity and good adhesion to soda lime glass are hard to obtain at the same time. These properties are dependent on the deposition conditions and are associated with the overall stress state of the film. In this report, a study of the deposition of a Mo bilayer is carried out by analysing first single and then bilayers. The best properties of the bilayer were achieved when the bottom layer was deposited at 10 × 10−3 mbar with a thickness of 500 nm and the top layer deposited at 1 × 10−3 mbar with a thickness of 300 nm. The films deposited under these conditions showed good adhesion and a sheet resistivity lower than 0.8 .
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para oBanho Termostatizadoenção do grau de Mestre em Engenharia Física
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores.
Resumo:
BACKGROUND: Lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal systems, and a renal tubular and hemodynamic response that mimics the renal adaptation observed in congestive heart failure (CHF). As beta-blockers play an important role in the management of CHF patients, the effects of metoprolol on the renal response were examined in healthy subjects during sustained LBNP. METHODS: Twenty healthy male subjects were randomized in this double blind, placebo versus metoprolol 200 mg once daily, study. After 10 days of treatment, each subject was exposed to 3 levels of LBNP (0, -10, and -20 mbar) for 1 hour, each level of LBNP being separated by 2 days. Neurohormonal profiles, systemic and renal hemodynamics, as well as renal sodium handling were measured before, during, and after LBNP. RESULTS: Blood pressure and heart rate were significantly lower in the metoprolol group throughout the study (P < 0.01). GFR and RPF were similar in both groups at baseline, and no change in renal hemodynamic values was detected at any level of LBNP. However, a reduction in sodium excretion was observed in the placebo group at -20 mbar, whereas no change was detected in the metoprolol group. An increase in plasma renin activity was also observed at -20 mbar in the placebo group that was not observed with metoprolol. CONCLUSION: The beta-blocker metoprolol prevents the sodium retention induced by lower body negative pressure in healthy subjects despite a lower blood pressure. The prevention of sodium retention may be due to a blunting of the neurohormonal response. These effects of metoprolol on the renal response to LBNP may in part explain the beneficial effects of this agent in heart failure patients.
Resumo:
BACKGROUND: Depending on its magnitude, lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal, renal tubular, and renal hemodynamic responses, thereby mimicking the renal responses observed in clinical conditions characterized by a low effective arterial volume such as congestive heart failure. Our objective was to evaluate the impact of angiotensin II receptor blockade with candesartan on the renal hemodynamic and urinary excretory responses to a progressive orthostatic stress in normal subjects. METHODS: Twenty healthy men were submitted to three levels of LBNP (0, -10, and -20 mbar or 0, -7.5, and -15 mm Hg) for 1 hour according to a crossover design with a minimum of 2 days between each level of LBNP. Ten subjects were randomly allocated to receive a placebo and ten others were treated with candesartan 16 mg orally for 10 days before and during the three levels of LBNP. Systemic and renal hemodynamics, renal sodium excretions, and the hormonal response were measured hourly before, during, and for 2 hours after LBNP. RESULTS: During placebo, LBNP induced no change in systemic and renal hemodynamics, but sodium excretion decreased dose dependently with higher levels of LBNP. At -20 mbar, cumulative 3-hour sodium balance was negative at -2.3 +/- 2.3 mmol (mean +/- SEM). With candesartan, mean blood pressure decreased (76 +/- 1 mm Hg vs. 83 +/- 3 mm Hg, candesartan vs. placebo, P < 0.05) and renal plasma flow increased (858 +/- 52 mL/min vs. 639 +/- 36 mL/min, candesartan vs. placebo, P < 0.05). Glomerular filtration rate (GFR) was not significantly higher with candesartan (127 +/- 7 mL/min in placebo vs. 144 +/- 12 mL/min in candesartan). No significant decrease in sodium and water excretion was found during LBNP in candesartan-treated subjects. At -20 mbar, the 3-hour cumulative sodium excretion was + 4.6 +/- 1.4 mmol in the candesartan group (P= 0.02 vs. placebo). CONCLUSION: Selective blockade of angiotensin II type 1 (AT1) receptors with candesartan increases renal blood flow and prevents the antinatriuresis during sustained lower body negative pressure despite a modest decrease in blood pressure. These results thus provide interesting insights into potential benefits of AT1 receptor blockade in sodium-retaining states such as congestive heart failure.
Resumo:
INTRODUCTION. The role of turbine-based NIV ventilators (TBV) versus ICU ventilators with NIV mode activated (ICUV) to deliver NIV in case of severe respiratory failure remains debated. OBJECTIVES. To compare the response time and pressurization capacity of TBV and ICUV during simulated NIV with normal and increased respiratory demand, in condition of normal and obstructive respiratory mechanics. METHODS. In a two-chamber lung model, a ventilator simulated normal (P0.1 = 2 mbar, respiratory rate RR = 15/min) or increased (P0.1 = 6 mbar, RR = 25/min) respiratory demand. NIV was simulated by connecting the lung model (compliance 100 ml/mbar; resistance 5 or 20 l/mbar) to a dummy head equipped with a naso-buccal mask. Connections allowed intentional leaks (29 ± 5 % of insufflated volume). Ventilators to test: Servo-i (Maquet), V60 and Vision (Philips Respironics) were connected via a standard circuit to the mask. Applied pressure support levels (PSL) were 7 mbar for normal and 14 mbar for increased demand. Airway pressure and flow were measured in the ventilator circuit and in the simulated airway. Ventilator performance was assessed by determining trigger delay (Td, ms), pressure time product at 300 ms (PTP300, mbar s) and inspiratory tidal volume (VT, ml) and compared by three-way ANOVA for the effect of inspiratory effort, resistance and the ventilator. Differences between ventilators for each condition were tested by oneway ANOVA and contrast (JMP 8.0.1, p\0.05). RESULTS. Inspiratory demand and resistance had a significant effect throughout all comparisons. Ventilator data figure in Table 1 (normal demand) and 2 (increased demand): (a) different from Servo-i, (b) different from V60.CONCLUSION. In this NIV bench study, with leaks, trigger delay was shorter for TBV with normal respiratory demand. By contrast, it was shorter for ICUV when respiratory demand was high. ICUV afforded better pressurization (PTP 300) with increased demand and PSL, particularly with increased resistance. TBV provided a higher inspiratory VT (i.e., downstream from the leaks) with normal demand, and a significantly (although minimally) lower VT with increased demand and PSL.
Resumo:
In this report we present the growth process of the cobalt oxide system using reactive electron beam deposition. In that technique, a target of metallic cobalt is evaporated and its atoms are in-flight oxidized in an oxygen rich reactive atmosphere before reaching the surface of the substrate. With a trial and error procedure the deposition parameters have been optimized to obtain the correct stoichiometry and crystalline phase. The evaporation conditions to achieve the correct cobalt oxide salt rock structure, when evaporating over amorphous silicon nitride, are: 525 K of substrate temperature, 2.5·10-4 mbar of oxygen partial pressure and 1 Å/s of evaporation rate. Once the parameters were optimized a set of ultra thin film ranging from samples of 1 nm of nominal thickness to 20nm thick and bulk samples were grown. With the aim to characterize the samples and study their microstructure and morphology, X-ray diffraction, transmission electron microscopy, electron diffraction, energy dispersive X-ray spectroscopy and quasi-adiabatic nanocalorimetry techniques are utilised. The final results show a size dependent effect of the antiferromagnetic transition. Its Néel temperature becomes depressed as the size of the grains forming the layer decreases.
Resumo:
Present interventions to repair severed peripheral nerves provide slow and poor early axonal regeneration, which may cause unsatisfactory functional reinnervation. To improve early axonal regeneration in a 10 mm rat sciatic nerve gap model, we developed collagen nerve conduits loaded with the synergistically acting glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF). For controlling the concomitant GDNF and NGF release, the collagen tubes were cross-linked by a dehydro-thermal treatment (110 degrees C; 20 mbar; 5 days) prior to impregnating the tubes with GDNF and NGF and by coating drug-loaded tubes with layers of poly(lactide-co-glycolide). The conduits made of cross-linked collagen released low initial amounts of GDNF and NGF (2% of both during first 3 days) and enhanced significantly the early (2 weeks) nerve regeneration in terms of axonal outgrowth and Schwann cell migration in a 10 mm rat sciatic nerve gap model, as compared to the conduits made of non-cross-linked collagen releasing higher initial amounts of GDNF and NGF (12-16% within 3 days), or those releasing GDNF alone. The enhancement of early axonal regeneration using controlled co-delivery of multiple synergistic neurotrophic factors is an important requisite for eventually establishing functional connections with the target organ.
Resumo:
ArF excimer laser pulses (193 nm, 20 ns, 150 mJ) have been focused on a hydroxyapatite (HA) target in similar conditions to those normally used for thin film deposition. Fast intensified CCD images of HA laser ablation plumes have been taken in vacuum and under different water vapor pressures ranging from 0.01 mbar to 1 mbar. Images of HA ablation in vacuum have shown a plume freely expanding at a constant velocity of 2.3 106 cm/s. HA ablation under a water vapor pressure of 0.01 mbar has revealed an expansion behavior very similar to that of ablation in vacuum. Images taken under a water vapor pressure of 0.1 mbar have shown the formation of a shock structure in the plume. Finally, HA ablation under a water vapor pressure of 1 mbar has revealed the development of some irregularities in the shape of the plume.
Resumo:
The expansion dynamics of the ablation plume generated by KrF laser irradiation of hydroxyapatite targets in a 0.1 mbar water atmosphere has been studied by fast intensified charge coupled device imaging with the aid of optical bandpass filters. The aim of the filters is to isolate the emission of a single species, which allows separate analysis of its expansion. Images obtained without a filter revealed two emissive components in the plume, which expand at different velocities for delay times of up to 1.1 ¿s. The dynamics of the first component is similar to that of a spherical shock wave, whereas the second component, smaller than the first, expands at constant velocity. Images obtained through a 520 nm filter show that the luminous intensity distribution and evolution of emissive atomic calcium is almost identical to those of the first component of the total emission and that there is no contribution from this species to the emission from the second component of the plume. The analysis through a 780 nm filter reveals that atomic oxygen partially diffuses into the water atmosphere and that there is a contribution from this species to the emission from the second component. The last species studied here, calcium oxide, was analyzed by means of a 600 nm filter. The images revealed an intensity pattern more complex than those from the atomic species. Calcium oxide also contributes to the emission from the second component. Finally, all the experiments were repeated in a Ne atmosphere. Comparison of the images revealed chemical reactions between the first component of the plume and the water atmosphere.