972 resultados para >1 mm
Resumo:
AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with high mobility GaN channel layer were grown on 50 min diameter semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition and large periphery HEMT devices were fabricated and characterized. High two-dimensional electron gas mobility of 2215 cm(2)/V s at room temperature with sheet electron concentration of 1.044 x 10(13)/cm(2) was achieved. The 50 mm diameter HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with the resistance uniformity of 2.02%. Atomic force microscopy measurements revealed a smooth AlGaN surface with a root-mean-square roughness of 0.27 nm for a scan area of 5 mu mi x 5 pm. The 1-mm gate width devices fabricated using the materials demonstrated a very high continuous wave output power of 9.39 W at 8 GHz, with a power added efficiency of 46.2% and power gain of 7.54 dB. A maximum drain current density of 1300 mA/mm, an extrinsic transconductance of 382 mS/mm, a current gain cutoff frequency of 31 GHz and a maximum frequency of oscillation 60 GHz were also achieved in the same devices. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The rapid advance in genetic sequencing technologies has provided an unprecedented amount of data on the biodiversity of meiofauna. It was hoped that these data would allow the identification and counting of species, distinguished as tight clusters of similar genomes. Surprisingly, this appears not to be the case. Here, we begin a theoretical discussion of this phenomenon, drawing on an individual-based ecological model to inform our arguments. The determining factor in the emergence (or not) of distinguishable genetic clusters in the model is the product of population size with mutation rate—a measure of the adaptability of the population as a whole. This result suggests that indeed one should not expect to observe clearly distinguishable species groupings in data gathered from ultrasequencing of meiofauna.