934 resultados para , energy efficient building


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local climate is a critical element in the design of energy efficient buildings. In this paper, ten years of historical weather data in Australia's eight capital cities were profiled and analysed to characterize the variations of climatic variables in Australia. The method of descriptive statistics was employed. Either the pattern of cumulative distribution and/or the profile of percentage distribution are presented. It was found that although weather variables vary with different locations, there is often a good, nearly linear relation between a weather variable and its cumulative percentage for the majority of middle part of the cumulative curves. By comparing the slopes of these distribution profiles, it may be possible to determine the relative range of changes of the particular weather variables for a given city. The implications of these distribution profiles of key weather variables on energy efficient building design are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The National Energy Efficient Building Project (NEEBP) Phase One report, published in December 2014, investigated “process issues and systemic failures” in the administration of the energy performance requirements in the National Construction Code. It found that most stakeholders believed that under-compliance with these requirements is widespread across Australia, with similar issues being reported in all states and territories. The report found that many different factors were contributing to this outcome and, as a result, many recommendations were offered that together would be expected to remedy the systemic issues reported. To follow up on this Phase 1 report, three additional projects were commissioned as part of Phase 2 of the overall NEEBP project. This Report deals with the development and piloting of an Electronic Building Passport (EBP) tool – a project undertaken jointly by pitt&sherry and a team at the Queensland University of Technology (QUT) led by Dr Wendy Miller. The other Phase 2 projects cover audits of Class 1 buildings and issues relating to building alterations and additions. The passport concept aims to provide all stakeholders with (controlled) access to the key documentation and information that they need to verify the energy performance of buildings. This trial project deals with residential buildings but in principle could apply to any building type. Nine councils were recruited to help develop and test a pilot electronic building passport tool. The participation of these councils – across all states – enabled an assessment of the extent to which these councils are currently utilising documentation; to track the compliance of residential buildings with the energy performance requirements in the National Construction Code (NCC). Overall we found that none of the participating councils are currently compiling all of the energy performance-related documentation that would demonstrate code compliance. The key reasons for this include: a major lack of clarity on precisely what documentation should be collected; cost and budget pressures; low public/stakeholder demand for the documentation; and a pragmatic judgement that non-compliance with any regulated documentation requirements represents a relatively low risk for them. Some councils reported producing documentation, such as certificates of final completion, only on demand, for example. Only three of the nine council participants reported regularly conducting compliance assessments or audits utilising this documentation and/or inspections. Overall we formed the view that documentation and information tracking processes operating within the building standards and compliance system are not working to assure compliance with the Code’s energy performance requirements. In other words the Code, and its implementation under state and territory regulatory processes, is falling short as a ‘quality assurance’ system for consumers. As a result it is likely that the new housing stock is under-performing relative to policy expectations, consuming unnecessary amounts of energy, imposing unnecessarily high energy bills on occupants, and generating unnecessary greenhouse gas emissions. At the same time, Councils noted that the demand for documentation relating to building energy performance was low. All the participant councils in the EBP pilot agreed that documentation and information processes need to work more effectively if the potential regulatory and market drivers towards energy efficient homes are to be harnessed. These findings are fully consistent with the Phase 1 NEEBP report. It was also agreed that an EBP system could potentially play an important role in improving documentation and information processes. However, only one of the participant councils indicated that they might adopt such a system on a voluntary basis. The majority felt that such a system would only be taken up if it were: - A nationally agreed system, imposed as a mandatory requirement under state or national regulation; - Capable of being used by multiple parties including councils, private certifiers, building regulators, builders and energy assessors in particular; and - Fully integrated into their existing document management systems, or at least seamlessly compatible rather than a separate, unlinked tool. Further, we note that the value of an EBP in capturing statistical information relating to the energy performance of buildings would be much greater if an EBP were adopted on a nationally consistent basis. Councils were clear that a key impediment to the take up of an EBP system is that they are facing very considerable budget and staffing challenges. They report that they are often unable to meet all community demands from the resources available to them. Therefore they are unlikely to provide resources to support the roll out of an EBP system on a voluntary basis. Overall, we conclude from this pilot that the public good would be well served if the Australian, state and territory governments continued to develop and implement an Electronic Building Passport system in a cost-efficient and effective manner. This development should occur with detailed input from building regulators, the Australian Building Codes Board (ABCB), councils and private certifiers in the first instance. This report provides a suite of recommendations (Section 7.2) designed to advance the development and guide the implementation of a national EBP system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter covers the basic concepts of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass. In environments with high seasonal peak temperatures and/or humidity (e.g. cities in temperate regions experiencing the Urban Heat Island effect), wholly passive measures may need to be supplemented with low and zero carbon technologies (LZCs). The chapter also includes three case studies: one residential, one demonstrational and one academic facility (that includes an innovative passive downdraught cooling (PDC) strategy) to illustrate a selection of passive measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose
– Concern of the deterioration of indoor environmental quality as a result of energy efficient building design strategies is growing. Apprehensions of the effect of airtight, super insulated envelopes, the reduction of infiltration, and the reliance on mechanical systems to provide adequate ventilation (air supply) is promoting emerging new research in this field. The purpose of this paper is to present the results of an indoor air quality (IAQ) and thermal comfort investigation in UK energy efficient homes, through a case study investigation.

Design/methodology/approach
– The case study dwellings consisted of a row of six new-build homes which utilize mechanical ventilation with heat recovery (MVHR) systems, are built to an average airtightness of 2m3/m2/hr at 50 Pascal’s, and constructed without a central heating system. Physical IAQ measurements and occupant interviews were conducted during the summer and winter months over a 24-hour period, to gain information on occupant activities, perception of the interior environment, building-related health and building use.

Findings
– The results suggest inadequate IAQ and perceived thermal comfort, insufficient use of purge ventilation, presence of fungal growth, significant variances in heating patterns, occurrence of sick building syndrome symptoms and issues with the MVHR system.

Practical implications
– The findings will provide relevant data on the applicability of airtight, mechanically ventilated homes in a UK climate, with particular reference to IAQ.

Originality/value
– IAQ data of this nature is essentially lacking, particularly in the UK context. The findings will aid the development of effective sustainable design strategies that are appropriate to localized climatic conditions and sensitive to the health of building occupants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy required to create a comfortable living environment in  high-density cities in hot and humid climates usually demands a substantial electricity usage with an associated environmental burden. This paper describes an integrated passive design approach to reduce the cooling requirement for high-rise apartments through an improved building envelope design. The results show that a saving of 31.4% in annual required cooling energy and 36.8% in the peak cooling load for the BASECASE apartment can be achieved with this approach. However, all the passive strategies have marginal effect on latent cooling load, often less than 1%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing pressure on the construction industry to deliver energy efficient, sustainable buildings but there is evidence to suggest that, in practice, designs regularly fail to achieve the anticipated levels of in-use energy consumption. One of the key factors behind this discrepancy is the behavior of the building occupants. This paper explores how insights from experimental psychology could potentially be used to reduce the gap between the predicted and actual energy performance of buildings. It demonstrates why traditional methods to engage with the occupants are not always successful and proposes a model for a more holistic approach to this issue. The paper concludes that achieving energy efficiency in buildings is not solely a technological issue and that the construction industry needs to adopt a more user-centred approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of three solar and daylighting control systems based on Calumen II, Ecotect and Radiance simulation programs to obtain an energy efficient and healthy interior in the experimental building prototype SDE10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The building sector requires the worldwide production of 4 billion tonnes of cement annually, consuming more than 40% of global energy and accounting for about 8% of the total CO2 emissions. The SUS-CON project aimed at integrating waste materials in the production cycle of concrete, for both ready-mixed and pre-cast applications, resulting in an innovative light-weight, ecocompatible and cost-effective construction material, made by all-waste materials and characterized by enhanced thermal insulation performance and low embodied energy and CO2. Alkali activated “cementless” binders, which have recently emerged as eco-friendly construction materials, were used in conjunction with lightweight recycled aggregates to produce sustainable concrete for a range of applications. This paper presents some results from the development of a concrete made with a geopolymeric binder (alkali activated fly ash) and aggregate from recycled mixed plastic. Mix optimisation was achieved through an extensive investigation on production parameters for binder and aggregate. The mix recipe was developed for achieving the required fresh and hardened properties. The optimised mix gave compressive strength of about 7 MPa, flexural strength of about 1.3 MPa and a thermal conductivity of 0.34 W/mK. Fresh and hardened properties were deemed suitable for the industrial production of precast products. Precast panels were designed and produced for the construction of demonstration buildings. Mock-ups of about 2.5 x 2.5 x 2.5 m were built at a demo park in Spain both with SUS-CON and Portland cement concrete, monitoring internal and external temperatures. Field results indicate that the SUS-CON mock-ups have better insulation. During the warmest period of the day, the measured temperature in the SUS-CON mock-ups was lower.