80 resultados para , Struts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents design recommendations for the strength of cold-formed steel angle structs. The work was part funded by the Carnegie Trust and is co-authored by academics from Hong-Kong University. The work has led to a collaboration with the University of Malaya, attempting to predict the strength using artificial neural networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the years the use of application frameworks designed for the View and Controller layers of MVC architectural pattern adapted to web applications has become very popular. These frameworks are classified into Actions Oriented and Components Oriented , according to the solution strategy adopted by the tools. The choice of such strategy leads the system architecture design to acquire non-functional characteristics caused by the way the framework influences the developer to implement the system. The components reusability is one of those characteristics and plays a very important role for development activities such as system evolution and maintenance. The work of this dissertation consists to analyze of how the reusability could be influenced by the Web frameworks usage. To accomplish this, small academic management applications were developed using the latest versions of Apache Struts and JavaServer Faces frameworks, the main representatives of Java plataform Web frameworks of. For this assessment was used a software quality model that associates internal attributes, which can be measured objectively, to the characteristics in question. These attributes and metrics defined for the model were based on some work related discussed in the document

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studio di fattibilità per la realizzazione di un modulo ERP con l'utilizzo di Apache Struts 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implantation of a coronary stent results in a mechanical enlargement of the coronary lumen with stretching of the surrounding atherosclerotic plaque. Using intravascular ultrasound virtual-histology (IVUS-VH) we examined the temporal changes in composition of the plaque behind the struts (PBS) following the implantation of the everolimus eluting bioresorbable vascular scaffold (BVS). Using IVUS-VH and dedicated software, the composition of plaque was analyzed in all patients from the ABSORB B trial who were imaged with a commercially available IVUS-VH console (s5i system, Volcano Corporation, Rancho Cordova, CA, USA) post-treatment and at 6-month follow-up. This dedicated software enabled analysis of the PBS after subtraction of the VH signal generated by the struts. The presence of necrotic core (NC) in contact with the lumen was also evaluated at baseline and follow-up. IVUS-VH data, recorded with s5i system, were available at baseline and 6-month follow-up in 15 patients and demonstrated an increase in both the area of PBS (2.45 ± 1.93 mm(2) vs. 3.19 ± 2.48 mm(2), P = 0.005) and the external elastic membrane area (13.76 ± 4.07 mm(2) vs. 14.76 ± 4.56 mm(2), P = 0.006). Compared to baseline there was a significant progression in the NC (0.85 ± 0.70 mm(2) vs. 1.21 ± 0.92 mm(2), P = 0.010) and fibrous tissue area (0.88 ± 0.79 mm(2) vs. 1.15 ± 1.05 mm(2), P = 0.027) of the PBS. The NC in contact with the lumen in the treated segment did not increase with follow-up (7.33 vs. 6.36%, P = 0.2). Serial IVUS-VH analysis of BVS-treated lesions at 6-month demonstrated a progression in the NC and fibrous tissue content of PBS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serial intravascular ultrasound virtual histology (IVUS-VH) after implantation of metallic stents has been unable to show any changes in the composition of the scaffolded plaque overtime. The everolimus-eluting ABSORB scaffold potentially allows for the formation of new fibrotic tissue on the scaffolded coronary plaque during bioresorption. We examined the 12 month IVUS-VH changes in composition of the plaque behind the struts (PBS) following the implantation of the ABSORB scaffold. Using IVUS-VH and dedicated software, the composition of the PBS was analyzed in all patients from the ABSORB Cohort B2 trial, who were imaged with a commercially available IVUS-VH console (s5i system, Volcano Corporation, Rancho Cordova, CA, USA), immediately post-ABSORB implantation and at 12 month follow-up. Paired IVUS-VH data, recorded with s5i system, were available in 17 patients (18 lesions). The analysis demonstrated an increase in mean PBS area (2.39 ± 1.85 mm(2) vs. 2.76 ± 1.79 mm(2), P = 0.078) and a reduction in the mean lumen area (6.37 ± 0.90 mm(2) vs. 5.98 ± 0.97 mm(2), P = 0.006). Conversely, a significant decrease of 16 and 30% in necrotic core (NC) and dense calcium (DC) content, respectively, were evident (median % NC from 43.24 to 36.06%, P = 0.016; median % DC from 20.28 to 11.36%, P = 0.002). Serial IVUS-VH analyses of plaque located behind the ABSORB struts at 12-month demonstrated an increase in plaque area with a decrease in its NC and DC content. Larger studies are required to investigate the clinical impact of these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to assess the serial changes in strut apposition and coverage of the bioresorbable vascular scaffolds (BVS) and to relate this with the presence of intraluminal masses at 6 months with optical coherence tomography (OCT).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background—Pathology studies on fatal cases of very late stent thrombosis have described incomplete neointimal coverage as common substrate, in some cases appearing at side-branch struts. Intravascular ultrasound studies have described the association between incomplete stent apposition (ISA) and stent thrombosis, but the mechanism explaining this association remains unclear. Whether the neointimal coverage of nonapposed side-branch and ISA struts is delayed with respect to well-apposed struts is unknown. Methods and Results—Optical coherence tomography studies from 178 stents implanted in 99 patients from 2 randomized trials were analyzed at 9 to 13 months of follow-up. The sample included 38 sirolimus-eluting, 33 biolimus-eluting, 57 everolimus-eluting, and 50 zotarolimus-eluting stents. Optical coherence tomography coverage of nonapposed side-branch and ISA struts was compared with well-apposed struts of the same stent by statistical pooled analysis with a random-effects model. A total of 34 120 struts were analyzed. The risk ratio of delayed coverage was 9.00 (95% confidence interval, 6.58 to 12.32) for nonapposed side-branch versus well-apposed struts, 9.10 (95% confidence interval, 7.34 to 11.28) for ISA versus well-apposed struts, and 1.73 (95% confidence interval, 1.34 to 2.23) for ISA versus nonapposed side-branch struts. Heterogeneity of the effect was observed in the comparison of ISA versus well-apposed struts (H=1.27; I2=38.40) but not in the other comparisons. Conclusions—Coverage of ISA and nonapposed side-branch struts is delayed with respect to well-apposed struts in drug-eluting stents, as assessed by optical coherence tomography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to describe the neointimal healing on the abluminal side (ABL) of malapposed (ISA) struts and nonapposed side-branch (NASB) struts in terms of coverage by optical coherence tomography (OCT) and in comparison with the adluminal side (ADL).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyse and to compare the changes in the various optical coherence tomography (OCT), echogenicity and intravascular ultrasound virtual histology (VH) of the everolimus-eluting bioresorbable scaffold (ABSORB) degradation parameters during the first 12 months after ABSORB implantation. In the ABSORB study, changes in the appearance of the ABSORB scaffold were monitored over time using various intracoronary imaging modalities. The scaffold struts exhibited a progressive change in their black core area by OCT, in their ultrasound derived grey level intensity quantified by echogenicity, and in their backscattering ultrasound signal, identified as "pseudo dense-calcium" (DC) by VH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optional inferior vena cava (IVC) filter prototype was evaluated for safety and long-term retrievability as an initial feasibility study in an animal model. This filter has four centering struts that have the ability to disengage from the filtering cone portion, allowing the legs to slide out of endothelial growth. Retrieval of six filters in three animals was successful up to 27 weeks. There was no substantial filter tilt, migration, or IVC damage. In conclusion, this filter design may help overcome some of the shortcomings in currently approved optional IVC filters, including long-term retrieval difficulties, tilting, or migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lance Burghardt bracketed his exposures and provided 3 different shots of these items (2 tifs, 1 jpg). Each shares same housescan number, differentiated by suffix 1of3, 2of3, or 3of3....

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earlier studies have shown that the influence of fixation stability on bone healing diminishes with advanced age. The goal of this study was to unravel the relationship between mechanical stimulus and age on callus competence at a tissue level. Using 3D in vitro micro-computed tomography derived metrics, 2D in vivo radiography, and histology, we investigated the influences of age and varying fixation stability on callus size, geometry, microstructure, composition, remodeling, and vascularity. Compared were four groups with a 1.5-mm osteotomy gap in the femora of Sprague–Dawley rats: Young rigid (YR), Young semirigid (YSR), Old rigid (OR), Old semirigid (OSR). Hypothesis was that calcified callus microstructure and composition is impaired due to the influence of advanced age, and these individuals would show a reduced response to fixation stabilities. Semirigid fixations resulted in a larger ΔCSA (Callus cross-sectional area) compared to rigid groups. In vitro μCT analysis at 6 weeks postmortem showed callus bridging scores in younger animals to be superior than their older counterparts (pb0.01). Younger animals showed (i) larger callus strut thickness (pb0.001), (ii) lower perforation in struts (pb0.01), and (iii) higher mineralization of callus struts (pb0.001). Callus mineralization was reduced in young animals with semirigid fracture fixation but remained unaffected in the aged group. While stability had an influence, age showed none on callus size and geometry of callus. With no differences observed in relative osteoid areas in the callus ROI, old as well as semirigid fixated animals showed a higher osteoclast count (pb0.05). Blood vessel density was reduced in animals with semirigid fixation (pb0.05). In conclusion, in vivo monitoring indicated delayed callus maturation in aged individuals. Callus bridging and callus competence (microstructure and mineralization) were impaired in individuals with an advanced age. This matched with increased bone resorption due to higher osteoclast numbers. Varying fixator configurations in older individuals did not alter the dominant effect of advanced age on callus tissue mineralization, unlike in their younger counterparts. Age-associated influences appeared independent from stability. This study illustrates the dominating role of osteoclastic activity in age-related impaired healing, while demonstrating the optimization of fixation parameters such as stiffness appeared to be less effective in influencing healing in aged individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Bone loss associated with trauma, osteo-degenerative diseases and tumors has tremendous socioeconomic impact related to personal and occupation disability and health care costs. In the present climate of increasing life expectancy with an ensuing increase in bone-related injuries, orthopaedic surgery is undergoing a paradigm shift from bone-grafting to bone engineering, where a scaffold is implanted to provide adequate load bearing and enhance tissue regeneration. We aim to develop composite scaffolds for bone tissue engineering applications to replace the current gold standard of autografting. ---------- Methods: Medical grade polycaprolactone-tricalcium phosphate (mPCL/TCP) scaffolds (80/20 wt%) were custom made using fused deposition modelling to produce 1x1.5x2 cm sized implants for critical-sized pig cranial implantations, empty defects were used as a control. Autologous bone marrow stromal cells (BMSCs) were extracted and precultured for 2 weeks, dispersed within fibrin glue and injected during scaffold implantation. After 2 years, microcomputed tomography and histology were used to assess bone regenerative capabilities of cell versus cell-free scaffolds. ---------- Results: Extensive bone regeneration was evident throughout the entire scaffold. Clear osteocytes embedded within mineralised matrix and active osteoblasts present around scaffold struts were observed. Cell groups performed better than cell-free scaffolds. ---------- Conclusions: Bone regeneration within defects which cannot heal unassisted can be achieved using mPCL/TCP scaffolds. This is improved by the inclusion of autogenous BMSCs. Further work will include the inclusion of growth factors including BMP-2, VEGF and PDGF to provide multifunctional scaffolds, where the three-dimensional (3D) template itself acts as a biomimetic, programmable and multi-drug delivery device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The favourable scaffold for bone tissue engineering should have desired characteristic features, such as adequate mechanical strength and three-dimensional open porosity, which guarantee a suitable environment for tissue regeneration. In fact, the design of such complex structures like bone scaffolds is a challenge for investigators. One of the aims is to achieve the best possible mechanical strength-degradation rate ratio. In this paper we attempt to use numerical modelling to evaluate material properties for designing bone tissue engineering scaffold fabricated via the fused deposition modelling technique. For our studies the standard genetic algorithm was used, which is an efficient method of discrete optimization. For the fused deposition modelling scaffold, each individual strut is scrutinized for its role in the architecture and structural support it provides for the scaffold, and its contribution to the overall scaffold was studied. The goal of the study was to create a numerical tool that could help to acquire the desired behaviour of tissue engineered scaffolds and our results showed that this could be achieved efficiently by using different materials for individual struts. To represent a great number of ways in which scaffold mechanical function loss could proceed, the exemplary set of different desirable scaffold stiffness loss function was chosen. © 2012 John Wiley & Sons, Ltd.