994 resultados para (i)-mobilization
Resumo:
15 p.
Resumo:
Hyperammonemia is a key factor in the pathogenesis of hepatic encephalopathy (HE) as well as other metabolic encephalopathies, such as those associated with inherited disorders of urea cycle enzymes and in Reye's syndrome. Acute HE results in increased brain ammonia (up to 5 mM), astrocytic swelling, and altered glutamatergic function. In the present study, using fluorescence imaging techniques, acute exposure (10 min) of ammonia (NH4+/NH3) to cultured astrocytes resulted in a concentration-dependent, transient increase in [Ca2+]i. This calcium transient was due to release from intracellular calcium stores, since the response was thapsigargin-sensitive and was still observed in calcium-free buffer. Using an enzyme-linked fluorescence assay, glutamate release was measured indirectly via the production of NADH (a naturally fluorescent product when excited with UV light). NH4+/NH3 (5 mM) stimulated a calcium-dependent glutamate release from cultured astrocytes, which was inhibited after preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester but unaffected after preincubation with glutamate transport inhibitors dihydrokainate and DL-threo-beta-benzyloxyaspartate. NH4+/NH3 (5 mM) also induced a transient intracellular alkaline shift. To investigate whether the effects of NH4+/NH3 were mediated by an increase in pH(i), we applied trimethylamine (TMA+/TMA) as another weak base. TMA+/TMA (5 mM) induced a similar transient increase in both pH(i) and [Ca2+]i (mobilization from intracellular calcium stores) and resulted in calcium-dependent release of glutamate. These results indicate that an acute exposure to ammonia, resulting in cytosolic alkalinization, leads to calcium-dependent glutamate release from astrocytes. A deregulation of glutamate release from astrocytes by ammonia could contribute to glutamate dysfunction consistently observed in acute HE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Os solos de restinga são pouco estudados e conhecidos no Brasil. Neste trabalho, a micromorfologia de horizontes espódicos foi investigada em quatro locais do litoral do Estado de São Paulo (Bertioga, Ilha de Cananeia, Ilha do Cardoso e Ilha Comprida). A técnica possibilitou caracterizar as diferentes formas da matéria orgânica, e, juntamente com a descrição morfológica de oito perfis de solos representativos das restingas do Estado de São Paulo, objetivou-se discutir os mecanismos envolvidos na gênese dos horizontes espódicos desses ambientes. Entre os resultados alcançados, destaca-se: a presença de revestimentos orgânicos monomórficos na superfície dos constituintes grossos da maioria dos horizontes analisados, bem como o preenchimento quase completo da porosidade entre grãos de alguns horizontes cimentados e brandos, são evidências de que a clássica teoria da mobilização, transporte e precipitação de complexos organometálicos é válida para os solos estudados. No entanto, matéria orgânica polimórfica e, ou, resíduos vegetais em diferentes estádios de decomposição foram as principais pedofeições observadas em horizontes espódicos mal drenados e sotopostos a horizontes hísticos. Nesses, a decomposição pela mesofauna e microbiológica das raízes in situ é um importante mecanismo de acumulação de matéria orgânica em profundidade e formação dos horizontes espódicos. A atuação das raízes na formação desses horizontes, no entanto, vai além da sua decomposição: a fábrica e as feições da matéria orgânica de um horizonte cimentado, incluindo remanescentes radiculares, indicaram que as raízes podem atuar na imobilização da matéria orgânica por meio de seu mecanismo de absorção seletiva. Nesse processo, a solução do solo rica em carbono orgânico dissolvido é absorvida seletivamente pelas raízes, segregando parte do carbono complexado em sua superfície e no entorno destas, absorvendo água e nutrientes. A atuação continuada desse processo leva à precipitação da matéria orgânica iluviada e segregada por meio de sua desidratação, que é condicionada pela própria absorção radicular.
Resumo:
Langerhans cells are a subset of dendritic cells (DCs) found in the human epidermis with unique morphological and molecular properties that enable their function as “sentinels” of the immune system. DCs are pivotal in the initiation and regulation of primary MHC class I restricted T lymphocyte immune responses and are able to present both endogenous and exogenous antigen onto class I molecules. Here, we study the MHC class I presentation pathway following activation of immature, CD34-derived human Langerhans cells by lipopolysaccharide (LPS). LPS induces an increase in all components of the MHC class I pathway including the transporter for antigen presentation (TAP), tapasin and ERp57, and the immunoproteasome subunits LMP2 and LMP7. Moreover, in CD34-derived Langerhans cells, the rapid increase in expression of MHC class I molecules seen at the cell surface following LPS activation is because of mobilization of MHC class I molecules from HLA-DM positive endosomal compartments, a pathway not seen in monocyte-derived DCs. Mobilization of class I from this compartment is primaquine sensitive and brefeldin A insensitive. These data demonstrate the regulation of the class I pathway in concert with the maturation of the CD34-derived Langerhans cells and suggest potential sites for antigen loading of class I proteins.
Resumo:
This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.
Resumo:
The DNA damage response encompasses a complex series of signaling pathways that function to regulate and facilitate the repair of damaged DNA. Recent studies have shown that the repair of transcriptionally inactive chromatin, named heterochromatin, is dependent upon the phosphorylation of the co-repressor, Krüppel-associated box (KRAB) domain-associated protein (KAP-1), by the ataxia telangiectasia-mutated (ATM) kinase. Co-repressors, such as KAP-1, function to regulate the rigid structure of heterochromatin by recruiting histone-modifying enzymes, such HDAC1/2, SETDB1, and nucleosome-remodeling complexes such as CHD3. Here, we have characterized a phosphorylation site in the HP1-binding domain of KAP-1, Ser-473, which is phosphorylated by the cell cycle checkpoint kinase Chk2. Expression of a nonphosphorylatable S473A mutant conferred cellular sensitivity to DNA-damaging agents and led to defective repair of DNA double-strand breaks in heterochromatin. In addition, cells expressing S473A also displayed defective mobilization of the HP1-β chromodomain protein. The DNA repair defect observed in cells expressing S473A was alleviated by depletion of HP1-β, suggesting that phosphorylation of KAP-1 on Ser-473 promotes the mobilization of HP1-β from heterochromatin and subsequent DNA repair. These results suggest a novel mechanism of KAP-1-mediated chromatin restructuring via Chk2-regulated HP1-β exchange from heterochromatin, promoting DNA repair.
Resumo:
Parthenium hysterophorus L. (Asteraceae) is a weed of national significance in Australia. Among the several arthropod agents introduced into Australia to control populations of P. hysterophorus biologically, Epiblema strenuana Walker (Lepidoptera: Tortricidae) is the most widespread and abundant agent. By intercepting the normal transport mechanisms of P. hysterophorus, the larvae of E. strenuana drain nutrients, other metabolic products, and energy, and place the host plant under intense metabolic stress. In this study, determinations of total non-structural carbohydrates (TNC) levels and carbon and nitrogen isotope ratios of fixed products in different parts of the plant tissue, including the gall, have been made to establish the function of gall as a sink for the nutrients. Values of δ13C and δ15N in galls were significantly different than those in proximal and distal stems, whereas the TNC levels were insignificant, when measured in the total population of P. hysterophorus, regardless of plant age. However, carbon, nitrogen, and TNC signatures presented significant results, when assayed in different developmental stages of P. hysterophorus. Carbon isotope ratios in galls were consistently more negative than those from the compared plant organs. Nitrogen isotope ratios in galls, on the contrary, were either similar to or less negative than the compared plant organs, especially within a single host-plant stage population (i.e., either rosette, preflowering, or flowering stage). TNC levels varied within compared plant populations. The stem distal to the gall functioned more efficiently as a nodal channel than the stem proximal to the gall, especially in the translocation of nitrogenous nutrients. Our findings indicate that the gall induced by E. strenuana functions as a sink for the assayed nutrients, although some variations have been observed in the patterns of nutrient mobilization. By creating a sink for the nutrients in the gall, E. strenuana is able to place the overall plant metabolism under stress, and this ability indicates E. strenuana has the necessary potential for use as a biological-control agent.
Resumo:
This dissertation examines how the crisis of World War I impacted imperial policy and popular claims-making in the British Caribbean. Between 1915 and 1918, tens of thousands of men from the British Caribbean volunteered to fight in World War I and nearly 16,000 men, hailing from every British colony in the region, served in the newly formed British West Indies Regiment (BWIR). Rousing appeals to imperial patriotism and manly duty during the wartime recruitment campaigns and postwar commemoration movement linked the British Empire, civilization, and Christianity while simultaneously promoting new roles for women vis-à-vis the colonial state. In Jamaica and Trinidad and Tobago, the two colonies that contributed over seventy-five percent of the British Caribbean troops, discussions about the meaning of the war for black, coloured, white, East Indian, and Chinese residents sparked heated debates about the relationship among race, gender, and imperial loyalty.
To explore these debates, this dissertation foregrounds the social, cultural, and political practices of BWIR soldiers, tracing their engagements with colonial authorities, military officials, and West Indian civilians throughout the war years. It begins by reassessing the origins of the BWIR, and then analyzes the regional campaign to recruit West Indian men for military service. Travelling with newly enlisted volunteers across the Atlantic, this study then chronicles soldiers' multi-sited campaign for equal status, pay, and standing in the British imperial armed forces. It closes by offering new perspectives on the dramatic postwar protests by BWIR soldiers in Italy in 1918 and British Honduras and Trinidad in 1919, and reflects on the trajectory of veterans' activism in the postwar era.
This study argues that the racism and discrimination soldiers experienced overseas fueled heightened claims-making in the postwar era. In the aftermath of the war, veterans mobilized collectively to garner financial support and social recognition from colonial officials. Rather than withdrawing their allegiance from the empire, ex-servicemen and civilians invoked notions of mutual obligation to argue that British officials owed a debt to West Indians for their wartime sacrifices. This study reveals the continued salience of imperial patriotism, even as veterans and their civilian allies invoked nested local, regional, and diasporic loyalties as well. In doing so, it contributes to the literature on the origins of patriotism in the colonial Caribbean, while providing a historical case study for contemporary debates about "hegemonic dissolution" and popular mobilization in the region.
This dissertation draws upon a wide range of written and visual sources, including archival materials, war recruitment posters, newspapers, oral histories, photographs, and memoirs. In addition to Colonial Office records and military files, it incorporates previously untapped letters and petitions from the Jamaica Archives, National Archives of Trinidad and Tobago, Barbados Department of Archives, and US National Archives.
Resumo:
This article describes the discovery and development of the first highly selective, small molecule antagonist of the muscarinic acetylcholine receptor subtype I (mAChR1 or M-1). An M-1 functional, cell-based, calcium-mobilization assay identified three distinct chemical series with initial selectivity for M-1 versus M-4. An iterative parallel synthesis approach was employed to optimize all three series in parallel, which led to the development of novel microwave-assisted chemistry and provided important take home lessons for probe development projects. Ultimately, this effort produced VU0255035, a potent (IC50 = 130 nM) and selective (>75-fold vs. M-2-M-5 and >10 mu M vs. a panel of 75 GPCRs, ion channels and transporters) small molecule M-1 antagonist. Further profiling demonstrated that VU0255035 was centrally penetrant (Brain(AUC)/Plasma(AUC) of 0.48) and active in vivo, rendering it acceptable as both an in vitro and in vivo MLSCN/MLPCN probe molecule for studying and dissecting M-1 function.
Resumo:
The DNA damage response encompasses a complex series of signaling pathways that function to regulate and facilitate the repair of damaged DNA. Recent studies have shown that the repair of transcriptionally inactive chromatin, named heterochromatin, is dependent upon the phosphorylation of the co-repressor, Krüppel-associated box (KRAB) domain-associated protein (KAP-1), by the ataxia telangiectasia-mutated (ATM) kinase. Co-repressors, such as KAP-1, function to regulate the rigid structure of heterochromatin by recruiting histone-modifying enzymes, such HDAC1/2, SETDB1, and nucleosome-remodeling complexes such as CHD3. Here, we have characterized a phosphorylation site in the HP1-binding domain of KAP-1, Ser-473, which is phosphorylated by the cell cycle checkpoint kinase Chk2. Expression of a nonphosphorylatable S473A mutant conferred cellular sensitivity to DNA-damaging agents and led to defective repair of DNA double-strand breaks in heterochromatin. In addition, cells expressing S473A also displayed defective mobilization of the HP1-ß chromodomain protein. The DNA repair defect observed in cells expressing S473A was alleviated by depletion of HP1-ß, suggesting that phosphorylation of KAP-1 on Ser-473 promotes the mobilization of HP1-ß from heterochromatin and subsequent DNA repair. These results suggest a novel mechanism of KAP-1-mediated chromatin restructuring via Chk2-regulated HP1-ß exchange from heterochromatin, promoting DNA repair.
Resumo:
PURPOSE: Statins have beneficial effects in patients after myocardial infarction and at least part of the benefit results from mobilization of marrow endothelial progenitors to repopulate damaged myocardial tissues. This study examines if statins may have the same effect in mobilizing marrow progenitors to be harvested and subsequently used in high-dose chemotherapy with progenitor cell rescue in multiple myeloma. METHODS: From 2006 to 2012, 86 patients with multiple myeloma were mobilized with the use of G-CSF and were retrospectively analyzed. Patients with other malignancies or mobilized with the use of chemotherapy or with plerixafor were excluded. RESULTS: The median age of the patients was 60 years. 72 patients had received one line of chemotherapy and 14 patients two or more lines of chemotherapy. Twenty patients were taking statins at the time of the harvest while 66 patients were not. In the group of patients taking statins the success rate of first leukapheresis (obtaining the target number of 4 × 10(6) CD34+ cells/kg) was 85 % while in the group not taking statins this rate was 63.6 %. Despite the comparatively small number of patients this difference approached statistical significance (χ (2) = 0.07). CONCLUSION: This retrospective analysis of 86 patients shows for the first time a possible benefit of statins for peripheral blood progenitor cells mobilization in patients with multiple myeloma. Larger studies would be required to clarify the issue. If their effectiveness is confirmed, statins could be a safe and cheaper addition to chemotherapy and plerixafor for peripheral hematopoietic stem cell mobilization.
Resumo:
CD4+ T lymphocytes play an important role in CD8+ T cell-mediated responses against tumors. Considering that about 20% of melanomas express major histocompatibility complex (MHC) class II, it is plausible that concomitant antigenic presentation by MHC class I and class II complexes shapes positive (helper T cells) or negative (regulatory T cells) anti-tumor responses. Interestingly, gp100, a melanoma antigen, can be presented by both MHC class I and class II when expressed endogenously, suggesting that it can reach endosomal/MHC class II compartments (MIIC). Here, we demonstrated that the gp100 putative amino-terminal signal sequence and the last 70 residues in carboxy-terminus, are essential for MIIC localization and MHC class II presentation. Confocal microscopy analyses confirmed that gp100 was localized in LAMP-1+ endosomal/MIIC. Gp100-targeting sequences were characterized by deleting different sections in the carboxy-terminus (residues 590 to 661). Transfection in 293T cells, expressing MHC class I and class II molecules, revealed that specific deletions in carboxy-terminus resulted in decreased MHC class II presentation, without effects on MHC class I presentation, suggesting a role in MIIC trafficking for these deleted sections. Then, we used these gp100-targeting sequences to mobilize the green fluorescent protein (GFP) to endosomal compartments, and to allow MHC class II and class I presentation of minimal endogenous epitopes. Thus, we concluded that these specific sequences are MIIC targeting motifs. Consequently, these sequences could be included in expression cassettes for endogenously expressed tumor or viral antigens to promote MHC class II and class I presentation and optimize in vivo T cell responses, or as an in vitro tool for characterization of new MHC class II epitopes.