140 resultados para "Frameshift"
Resumo:
In the last decade, huge breakthroughs in genetics - driven by new technology and different statistical approaches - have resulted in a plethora of new disease genes identified for both common and rare diseases. Massive parallel sequencing, commonly known as next-generation sequencing, is the latest advance in genetics, and has already facilitated the discovery of the molecular cause of many monogenic disorders. This article describes this new technology and reviews how this approach has been used successfully in patients with skeletal dysplasias. Moreover, this article illustrates how the study of rare diseases can inform understanding and therapeutic developments for common diseases such as osteoporosis. © International Osteoporosis Foundation and National Osteoporosis Foundation 2013.
Resumo:
In programmed -1 ribosomal frameshift, an RNA pseudoknot stalls the ribosome at specific sequence and restarts translation in a new reading frame. A precise understanding of structural characteristics of these pseudoknots and their PRF inducing ability has not been clear to date. To investigate this phenomenon, we have studied various structural aspects of a -1 PRF inducing RNA pseudoknot from BWYV using extensive molecular dynamics simulations. A set of functional and poorly functional forms, for which previous mutational data were available, were chosen for analysis. These structures differ from each other by either single base substitutions or base-pair replacements from the native structure. We have rationalized how certain mutations in RNA pseudoknot affect its function; e.g., a specific base substitution in loop 2 stabilizes the junction geometry by forming multiple noncanonical hydrogen bonds, leading to a highly rigid structure that could effectively resist ribosome-induced unfolding, thereby increasing efficiency. While, a CG to AU pair substitution in stem 1 leads to loss of noncanonical hydrogen bonds between stems and loop, resulting in a less stable structure and reduced PRF inducing ability, inversion of a pair in stem 2 alters specific base-pair geometry that might be required in ribosomal recognition of nucleobase groups, negatively affecting pseudoknot functioning. These observations illustrate that the ability of an RNA pseudoknot to induce -1 PRF with an optimal rate depends on several independent factors that contribute to either the local conformational variability or geometry
Resumo:
Background: Dentin phosphoprotein ( DPP) is the most abundant non-collagenous protein in dentin, which is highly phosphorylated and plays key roles in dentin biomineralisation. The aetiology of isolated hereditary dentin disorders in most affected familie
Resumo:
Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process.
Resumo:
Cystic fibrosis (CF) is one of the most common genetic diseases in the Caucasian population and is characterized by chronic obstructive pulmonary disease, exocrine pancreatic insufficiency, and elevation of sodium and chloride concentrations in the sweat and infertility in men. The disease is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a protein that functions as chloride channel at the apical membrane of different epithelia. Owing to the high genotypic and phenotypic disease heterogeneity, effects and consequences of the majority of the CFTR mutations have not yet been studied. Recently, the frameshift mutation 3905insT was identified as the second most frequent mutation in the Swiss population and found to be associated with a severe phenotype. The frameshift mutation produces a premature termination codon (PTC) in exon 20, and transcripts bearing this PTC are potential targets for degradation through nonsense-mediated mRNA decay (NMD) and/or for exon skipping through nonsense-associated alternative splicing (NAS). Using RT-PCR analysis in lymphocytes and different tissue types from patients carrying the mutation, we showed that the PTC introduced by the mutation does neither elicit a degradation of the mRNA through NMD nor an alternative splicing through NAS. Moreover, immunocytochemical analysis in nasal epithelial cells revealed a significantly reduced amount of CFTR at the apical membrane providing a possible molecular explanation for the more severe phenotype observed in F508del/3905insT compound heterozygotes compared with F508del homozygotes. However, further experiments are needed to elucidate the fate of the 3905insT CFTR in the cell after its biosynthesis.
Resumo:
Mammals are unable to synthesize cobalamin or vitamin B12 and rely on the uptake of dietary cobalamin. The cubam receptor expressed on the intestinal endothelium is required for the uptake of cobalamin from the gut. Cubam is composed of two protein subunits, amnionless and cubilin, which are encoded by the AMN and CUBN genes respectively. Loss-of-function mutations in either the AMN or the CUBN gene lead to hereditary selective cobalamin malabsorption or Imerslund-Gräsbeck syndrome (IGS). We investigated Beagles with IGS and resequenced the whole genome of one affected Beagle at 15× coverage. The analysis of the AMN and CUBN candidate genes revealed a homozygous deletion of a single cytosine in exon 8 of the CUBN gene (c.786delC). This deletion leads to a frameshift and early premature stop codon (p.Asp262Glufs*47) and is, thus, predicted to represent a complete loss-of-function allele. We tested three IGS-affected and 89 control Beagles and found perfect association between the IGS phenotype and the CUBN:c.786delC variant. Given the known role of cubilin in cobalamin transport, which has been firmly established in humans and dogs, our data strongly suggest that the CUBN:c.786delC variant is causing IGS in the investigated Beagles.
Resumo:
Imerslund-Gräsbeck syndrome (IGS) or selective cobalamin malabsorption has been described in humans and dogs. IGS occurs in Border Collies and is inherited as a monogenic autosomal recessive trait in this breed. Using 7 IGS cases and 7 non-affected controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 3.53 Mb interval on chromosome 2. We re-sequenced the genome of one affected dog at ∼10× coverage and detected 17 non-synonymous variants in the critical interval. Two of these non-synonymous variants were in the cubilin gene (CUBN), which is known to play an essential role in cobalamin uptake from the ileum. We tested these two CUBN variants for association with IGS in larger cohorts of dogs and found that only one of them was perfectly associated with the phenotype. This variant, a single base pair deletion (c.8392delC), is predicted to cause a frameshift and premature stop codon in the CUBN gene. The resulting mutant open reading frame is 821 codons shorter than the wildtype open reading frame (p.Q2798Rfs*3). Interestingly, we observed an additional nonsense mutation in the MRC1 gene encoding the mannose receptor, C type 1, which was in perfect linkage disequilibrium with the CUBN frameshift mutation. Based on our genetic data and the known role of CUBN for cobalamin uptake we conclude that the identified CUBN frameshift mutation is most likely causative for IGS in Border Collies.
Resumo:
The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of MLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3–10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3–10 reversion rate, whereas the hom3–10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex.
Resumo:
Translesion synthesis at replication-blocking lesions requires the induction of proteins that are controlled by the SOS system in Escherichia coli. Of the proteins identified so far, UmuD′, UmuC, and RecA* were shown to facilitate replication across UV-light-induced lesions, yielding both error-free and mutagenic translesion-synthesis products. Similar to UV lesions, N-2-acetylaminofluorene (AAF), a chemical carcinogen that forms covalent adducts at the C8 position of guanine residues, is a strong replication-blocking lesion. Frameshift mutations are induced efficiently by AAF adducts when located within short repetitive sequences in a two-step mechanism; AAF adducts incorporate a cytosine across from the lesion and then form a primer-template misaligned intermediate that, upon elongation, yields frameshift mutations. Recently, we have shown that although elongation from the nonslipped intermediate depends on functional umuDC+ gene products, elongation from the slipped intermediate is umuDC+-independent but requires another, as yet biochemically uncharacterized, SOS function. We now show that in DNA Polymerase III-proofreading mutant strains (dnaQ49 and mutD5 strains), elongation from the slipped intermediate is highly efficient in the absence of SOS induction—in contrast to elongation from the nonslipped intermediate, which still requires UmuDC functions.
Resumo:
Escherichia coli possesses three SOS-inducible DNA polymerases (Pol II, IV, and V) that were recently found to participate in translesion synthesis and mutagenesis. Involvement of these polymerases appears to depend on the nature of the lesion and its local sequence context, as illustrated by the bypass of a single N-2-acetylaminofluorene adduct within the NarI mutation hot spot. Indeed, error-free bypass requires Pol V (umuDC), whereas mutagenic (−2 frameshift) bypass depends on Pol II (polB). In this paper, we show that purified DNA Pol II is able in vitro to generate the −2 frameshift bypass product observed in vivo at the NarI sites. Although the ΔpolB strain is completely defective in this mutation pathway, introduction of the polB gene on a low copy number plasmid restores the −2 frameshift pathway. In fact, modification of the relative copy number of polB versus umuDC genes results in a corresponding modification in the use of the frameshift versus error-free translesion pathways, suggesting a direct competition between Pol II and V for the bypass of the same lesion. Whether such a polymerase competition model for translesion synthesis will prove to be generally applicable remains to be confirmed.
Resumo:
Adaptive reversion of a lac- frameshift mutation in Escherichia coli appears to be due to DNA polymerase errors, implying that DNA is being synthesized although the cells are not dividing. Here we report that the production of adaptive lac+ revertants (i) is much higher when the mutational target is on the F' episome than when it is on the bacterial chromosome; (ii) is enhanced by functions required for conjugation; but (iii) does not require conjugation per se. These results suggest that, in static cells, DNA synthesis is initiated from the conjugal origin of transfer. Mutations may arise as polymerase errors during this synthesis or during synthesis stimulated by recombination among the multiple gene copies.
Resumo:
Dilated cardiomyopathy (DCM) is an etiologically heterogeneous cardiac disease characterized by left ventricular dilation and systolic dysfunction. Approximately 25-30% of DCM patients show a family history of mainly autosomal dominant inheritance. We and others have previously demonstrated that mutations in the giant muscle filament titin (TTN) can cause DCM. However, the prevalence of titin mutations in familial DCM is unknown. In this paper, we report a novel heterozygous 1-bp deletion mutation (c.62890delG) in TTN that cosegregates with DCM in a large Australian pedigree (A3). The TTN deletion mutation c.62890delG causes a frameshift, thereby generating a truncated A-band titin due to a premature stop codon (p.E20963KfsX10) and the addition of ten novel amino acid residues. The clinical phenotype of DCM in kindred A3 demonstrates incomplete penetrance and variable expressivity. Finally, protein analysis of a skeletal muscle biopsy sample from an affected member did not reveal the predicted truncated titin isoform although the aberrant mRNA was present, suggesting posttranslational modification and degradation of the truncated protein. The identification of a novel disease-causing mutation in the giant titin gene in a third large family with DCM indicates that mutations in titin may account for a significant portion of the genetic etiology in familial DCM.
Resumo:
The CDKN2A gene maps to chromosome 9p21-22 and is responsible for melanoma susceptibility in some families. Its product, p16, binds specifically to CDK4 and CDK6 in vitro and in vivo, inhibiting their kinase activity. CDKN2A is homozygously deleted or mutated in a large proportion of tumor cell lines and some primary tumors, including melanomas. The aim of this study was to investigate the involvement of CDKN2A and elucidate the mechanisms of p16 inactivation in a panel of 60 cell lines derived from sporadic melanomas. Twenty-six (43%) of the melanoma lines were homozygously deleted for CDKN2A, and an additional 15 (25%) lines carried missense, nonsense, or frameshift mutations. All but one of the latter group were shown by microsatellite analysis to be hemizygous for the region of 9p surrounding CDKN2A. p16 was detected by Western blotting in only five of the cell lines carrying mutations. Immunoprecipitation of p16 in these lines, followed by Western blotting to detect the coprecipitation of CDK4 and CDK6, revealed that p16 was functionally compromised in all cell lines but the one that carried a heterozygous CDKN2A mutation. In the remaining 19 lines that carried wild-type CDKN2A alleles, Western blot analysis and immunoprecipitation indicated that 11 cell lines expressed a wild-type protein. Northern blotting was performed on the remaining eight cell lines and revealed that one cell line carried an aberrantly sized RNA transcript, and two other cell lines failed to express RNA. The promoter was found to be methylated in five cell lines that expressed CDKN2A transcript but not p16. Presumably, the message seen by Northern blotting in these cell lines is the result of cross-hybridization of the total cDNA probe with the exon 1beta transcript. Microsatellite analysis revealed that the majority of these cell lines were hemi/homozygous for the region surrounding CDKN2A, indicating that the wild-type allele had been lost. In the 11 cell lines that expressed functional p16, microsatellite analysis revealed loss of heterozygosity at the markers immediately surrounding CDKN2A in five cases, and the previously characterized R24C mutation of CDK4 was identified in one of the remaining 6 lines. These data indicate that 55 of 60 (92%) melanoma cell lines demonstrated some aberration of CDKN2A or CDK4, thus suggesting that this pathway is a primary genetic target in melanoma development.
Resumo:
A loss of function mutation in the TRESK K2P potassium channel (KCNK18), has recently been linked with typical familial migraine with aura. We now report the functional characterisation of additional TRESK channel missense variants identified in unrelated patients. Several variants either had no apparent functional effect, or they caused a reduction in channel activity. However, the C110R variant was found to cause a complete loss of TRESK function, yet is present in both sporadic migraine and control cohorts, and no variation in KCNK18 copy number was found. Thus despite the previously identified association between loss of TRESK channel activity and migraine in a large multigenerational pedigree, this finding indicates that a single non-functional TRESK variant is not alone sufficient to cause typical migraine and highlights the genetic complexity of this disorder. Migraine is a common, disabling neurological disorder with a genetic, environmental and in some cases hormonal component. It is characterized by attacks of severe, usually unilateral and throbbing headache, can be accompanied by nausea, vomiting and photophobia and is clinically divided into two main subtypes, migraine with aura (MA) when a migraine is accompanied by transient and reversible focal neurological symptoms and migraine without aura (MO)1. The multifactorial and clinical heterogeneity of the disorder have considerably hindered the identification of common migraine susceptibility genes and most of our current understanding comes from the studies of familial hemiplegic migraine (FHM), a rare monogenic autosomal dominant form of MA2. So far, the three susceptibility genes that have been convincingly identified in FHM families all encode ion channels or transporters: CACNA1A encoding the α1 subunit of the Cav2.1 calcium channel3, SCN1A encoding the Nav1.1 sodium channel4 and ATP1A2 encoding the α2 subunit of the Na+/K+ pump5. It is believed that mutations in these genes may lead to increased efflux of glutamate and potassium in the synapse and thereby cause migraine by rendering the brain more susceptible to cortical spreading depression (CSD)6 which is thought to play a role in initiating a migraine attack7,8. However, these genes have not to date been implicated in common forms of migraine9. Nevertheless, current opinion suggests that typical migraine, like FHM, is also disorder of neuronal excitability, ion homeostasis and neurotransmitter release10,11,12. Mutations in the SLC4A4 gene encoding the sodium-bicarbonate cotransporter NBCe1, have recently been implicated in several different forms of migraine13, and a variety of genes involved in glutamate homeostasis (PGCP, MTDH14 and LRP115) and a cation channel (TRPM8)15 have also recently been implicated in migraine via genome-wide association studies. Ion channels are therefore highly likely to play an important role in the pathogenesis of typical migraine. TRESK (KCNK18), is a member of the two-pore domain (K2P) family of potassium channels involved in the control of cellular electrical excitability16. Regulation of TRESK activity by the calcium-dependent phosphatase calcineurin17, as well as its expression in dorsal root ganglia (DRG)18 and trigeminal ganglia (TG)19,20 has led to a proposed role for this channel in a variety of pain pathways. In a recent study, a frameshift mutation (F139Wfsx24) in TRESK was identified in a large multigenerational pedigree where it co-segregated perfectly with typical MA and a significant genome-wide linkage LOD score of 3.0. Furthermore, functional analysis revealed that this mutation caused a complete loss of TRESK function and that the truncated subunit was also capable of down regulating wild-type channel function. This therefore highlighted KCNK18 as potentially important candidate gene and suggested that TRESK dysfunction might play a possible role in the pathogenesis of familial migraine with visual aura20. Additional screening for KCNK18 mutations in unrelated sporadic migraine and control cohorts also identified a number of other missense variants; R10G, A34V, C110R, S231P and A233V20. The A233V variant was found only in the control cohort, whilst A34V was identified in a single Australian migraine proband for which family samples were not available, but it was not detected in controls. By contrast, the R10G, C110R, and S231P variants were found in both migraineurs and controls in both cohorts. In this study, we have investigated the functional effect of these variants to further probe the potential association of TRESK dysfunction with typical migraine.