945 resultados para "Box counting"
Resumo:
In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In ddition, some properties of the FD are discussed.
A Phase Space Box-counting based Method for Arrhythmia Prediction from Electrocardiogram Time Series
Resumo:
Arrhythmia is one kind of cardiovascular diseases that give rise to the number of deaths and potentially yields immedicable danger. Arrhythmia is a life threatening condition originating from disorganized propagation of electrical signals in heart resulting in desynchronization among different chambers of the heart. Fundamentally, the synchronization process means that the phase relationship of electrical activities between the chambers remains coherent, maintaining a constant phase difference over time. If desynchronization occurs due to arrhythmia, the coherent phase relationship breaks down resulting in chaotic rhythm affecting the regular pumping mechanism of heart. This phenomenon was explored by using the phase space reconstruction technique which is a standard analysis technique of time series data generated from nonlinear dynamical system. In this project a novel index is presented for predicting the onset of ventricular arrhythmias. Analysis of continuously captured long-term ECG data recordings was conducted up to the onset of arrhythmia by the phase space reconstruction method, obtaining 2-dimensional images, analysed by the box counting method. The method was tested using the ECG data set of three different kinds including normal (NR), Ventricular Tachycardia (VT), Ventricular Fibrillation (VF), extracted from the Physionet ECG database. Statistical measures like mean (μ), standard deviation (σ) and coefficient of variation (σ/μ) for the box-counting in phase space diagrams are derived for a sliding window of 10 beats of ECG signal. From the results of these statistical analyses, a threshold was derived as an upper bound of Coefficient of Variation (CV) for box-counting of ECG phase portraits which is capable of reliably predicting the impeding arrhythmia long before its actual occurrence. As future work of research, it was planned to validate this prediction tool over a wider population of patients affected by different kind of arrhythmia, like atrial fibrillation, bundle and brunch block, and set different thresholds for them, in order to confirm its clinical applicability.
Resumo:
We propose a simple method of constructing quasi-likelihood functions for dependent data based on conditional-mean-variance relationships, and apply the method to estimating the fractal dimension from box-counting data. Simulation studies were carried out to compare this method with the traditional methods. We also applied this technique to real data from fishing grounds in the Gulf of Carpentaria, Australia
Detection and Characterization of Long-Pulse Low-Velocity Impact Damage in Plastic Bonded Explosives
Resumo:
Damage not only degrades the mechanical properties of explosives, but also influences the shock sensitivity, combustion and even detonation behavior of explosives. The study of impact damage is crucial in the vulnerability evaluation of explosives. A long-pulse low-velocity gas gun with a gas buffer was developed and used to induce impact damage in a hot pressed plastic bonded explosive. Various methods were used to detect and characterize the impact damage of the explosive. The microstructure was examined by use of polarized light microscopy. Fractal analysis of the micrographs was conducted by use of box counting method. The correlation between the fractal dimensions and microstructures was analyzed. Ultrasonic testing was conducted using a pulse through-transmission method to obtain the ultrasonic velocity and ultrasonic attenuation. Spectra analyses were carried out for recorded ultrasonic signals using fast Fourier transform. The correlations between the impact damage and ultrasonic parameters including ultrasonic velocities and attenuation coefficients were also analyzed. To quantitatively assess the impact induced explosive crystal fractures, particle size distribution analyses of explosive crystals were conducted by using a thorough etching technique, in which the explosives samples were soaked in a solution for enough time that the binder was totally removed. Impact induces a large extent of explosive crystal fractures and a large number of microcracks. The ultrasonic velocity decreases and attenuation coefficients increase with the presence of impact damage. Both ultrasonic parameters and fractal dimension can be used to quantitatively assess the impact damage of plastic bonded explosives.
Resumo:
This study was made as an attempt to investigate the optimum packing density and the ice quantity suitable for the transport of Penaeus monodon juveniles. The results revealed that prawns of 40 mg size can be packed to as much as 3,000 per bag. While packing densities above 3,000 per bag containing 8 L seawater and 16 L oxygen can be used only for short transport periods. On the other hand in the ice-quantity experiment, mortality rate was less than 1% in all the bags containing 300 g, 600 g, 900 g and 1200 g of ice. A packing temperature of 20~’C must be maintained hence, 50 g of ice per hour should be allowed per box, counting from the moment the box is sealed to the time it is estimated to be opened.
Resumo:
The branched crystal morphology of linear polyethylene formed at various temperatures from thin films has been studied by atomic-force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) pattern and polymer decoration technique. Two types of branched patterns, i.e. dendrite and seaweed patterns, have been visualized. The fractal dimension d(f) = 1.65 of both dendrite and some of seaweed patterns was obtained by using the box-counting method, although most of the seaweed patterns are compact. Selected-area ED patterns indicate that the fold stems tilt about 34.5degrees around the b-axis and polymer decoration patterns show that the chain folding direction and regularity in two (200). regions are quite different from each other. Because of chain tilting, branched crystals show three striking features: 1) the lamella-like branches show two (200) regions with different thickness; 2) the crystals usually bend towards the thin region; 3) the thick region grows faster by developing branches, thus branches usually occur outside the thick region. The branched patterns show a characteristic width w, which gives a linear relationship with the crystallization temperature on a semilogarithmic plot.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure-volume curves and the pseudophase-plane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
Fractal geometry is a fundamental approach for describing the complex irregularities of the spatial structure of point patterns. The present research characterizes the spatial structure of the Swiss population distribution in the three Swiss geographical regions (Alps, Plateau and Jura) and at the entire country level. These analyses were carried out using fractal and multifractal measures for point patterns, which enabled the estimation of the spatial degree of clustering of a distribution at different scales. The Swiss population dataset is presented on a grid of points and thus it can be modelled as a "point process" where each point is characterized by its spatial location (geometrical support) and a number of inhabitants (measured variable). The fractal characterization was performed by means of the box-counting dimension and the multifractal analysis was conducted through the Renyi's generalized dimensions and the multifractal spectrum. Results showed that the four population patterns are all multifractals and present different clustering behaviours. Applying multifractal and fractal methods at different geographical regions and at different scales allowed us to quantify and describe the dissimilarities between the four structures and their underlying processes. This paper is the first Swiss geodemographic study applying multifractal methods using high resolution data.
Resumo:
We present a general method of generating continuous fractal interpolation surfaces by iterated function systems on an arbitrary data set over rectangular grids and estimate their Box-counting dimension.
Resumo:
A recurrent iterated function system (RIFS) is a genaralization of an IFS and provides nonself-affine fractal sets which are closer to natural objects. In general, it's attractor is not a continuous surface in R3. A recurrent fractal interpolation surface (RFIS) is an attractor of RIFS which is a graph of bivariate continuous interpolation function. We introduce a general method of generating recurrent interpolation surface which are at- tractors of RIFSs about any data set on a grid.
Resumo:
Introducción: La geometría fractal permite la descripción objetiva de objetos irregulares tales como las estructuras del cuerpo humano: Por ello, en este caso, se aplicó al desarrollo de una nueva metodología de caracterización de la cavidad cardiotorácica.Material y métodos: Estudio exploratorio descriptivo en el que se desarrolló una metodología de medición basada en la geometría fractal aplicada a 14 radiografías de tórax de sujetos con diferentes patologías. Se calcularon las dimensiones fractales de la cavidad torácica, la silueta cardíaca y la superposición de estas partes con el método de Box-Counting.Resultados: Se obtuvieron nuevas medidas morfométricas objetivas y reproducibles de placas de tórax a partir de dimensiones fractales.Conclusiones: La geometría fractal permite la caracterización matemática de placas de tórax de pacientes con diferentes patologías. Es posible que el desarrollo de esta metodología en posteriores investigaciones permita generar parámetros útiles de aplicación clínica, independientes de la experiencia del médico y de su observación subjetiva, de modo que garantice la reproducibilidad y objetividad de las medidas.
Resumo:
Introduction. Fractal geometry measures the irregularity of abstract and natural objects with the fractal dimension. Fractal calculations have been applied to the structures of the human body and to quantifications in physiology from the theory of dynamic systems.Material and Methods. The fractal dimensions were calculated, the number of occupation spaces in the space border of box counting and the area of two red blood cells groups, 7 normal ones, group A, and 7 abnormal, group B, coming from patient and of bags for transfusion, were calculated using the method of box counting and a software developed for such effect. The obtained measures were compared, looking for differences between normal and abnormal red blood cells, with the purpose of differentiating samples.Results. The abnormality characterizes by a number of squares of occupation of the fractal space greater or equal to 180; values of areas between 25.117 and 33.548 correspond to normality. In case that the evaluation according to the number of pictures is of normality, must be confirmed with the value of the area applied to adjacent red blood cells within the sample, that in case of having values by outside established and/or the greater or equal spaces to 180, they suggest abnormality of the sample.Conclusions. The developed methodology is effective to differentiate the red globules alterations and probably useful in the analysis of bags of transfusion for clinical use
Resumo:
Introducción. La geometría fractal ha mostrado ser adecuada en la descripción matemática de objetos irregulares; esta medida se ha denominado dimensión fractal. La aplicación del análisis fractal para medir los contornos de las células normales así como aquellas que presentan algún tipo de anormalidad, ha mostrado la posibilidad de caracterización matemática de su irregularidad. Objetivos. Medir, a partir de la geometría fractal células del epitelio escamoso de cuello uterino clasificadas como normales, atipias escamosas de significado indeterminado (ASC-US) y lesiones intraepiteliales escamosas de bajo grado (LEIBG), diagnosticadas mediante observación microscópica, en busca de mediciones matemáticas que las distingan. Metodología. Este es un estudio exploratorio descriptivo en el que se calcularon las dimensiones fractales, con el método de box counting simplificado y convencional, de los contornos celular y nuclear de 13 células del epitelio escamoso de cuello uterino normales y con anormalidades como ASC-US y lesiones intraepiteliales de bajo grado (LEI BG), a partir de fotografías digitales de 7 células normales, 2 ASCUS y 4 LEI BG diagnosticadas con criterios citomorfológicos mediante observación microscópica convencional. Resultados. Se desarrolló una medida cuantitativa, objetiva y reproducible del grado de irregularidad en las células del epitelio escamoso de cuello uterino identificadas microscópicamente como normales, ASC-US y LEI BG. Conclusiones Se evidenció una organización fractal en la arquitectura celular normal, así como en células ASC-US y las lesiones intraepiteliales de bajo grado (LEI BG). No se encontraron diferencias entre los tipos celulares estudiados.