997 resultados para zirconium-rich master alloy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research suggest that the iron-rich intermetallic phases, such as alpha-FeAl15(Fe,Mn)(3)Si-2 and beta-Fe Al5FeSi, nucleate on oxide films entrained in aluminum casting alloys. This is evidenced by the presence of crack-like defects within these iron-rich intermetallics. In an attempt to verify the role of oxides in nucleating iron-rich intermetallics, experiments have been conducted under conditions where in-situ entrained oxide films and deliberately added oxide particles were present. Iron-rich intermetallics are observed to be associated with the oxides in the final microstructure, and crack-like defects are often observed in the beta-Fe plates. The physical association of the Fe-rich intermetallic phases with these solid oxides, either formed in situ or added, is in accordance with the mechanism suggesting that iron-rich intermetallics nucleate upon the wetted sides of double oxide films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of commercial Al-Sr master alloys of differing Sr content and product form have been added to Al-7Si-0.5Mg casting alloy melts and held at constant temperature for periods up to 7 hours following the addition. The master alloys were added to achieve a specific Sr target level of 200 ppm, and the melts were held at various temperatures (most at 710ºC, but also 670, 690, 740 and 770ºC). A total of thirty six melt trials were conducted and during each trial chill-cast disc samples were taken throughout for subsequent chemical analysis. The Sr concentration versus time data of each trial has been considered in terms of Sr dissolution/recovery behaviour, as well as Sr loss/fade. Trends in the data are identified and discussed, and implications for industrial practices are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compressive creep behaviour of six sand cast zinc-rich alloys: No3 and No5, corresponding to BS 1004A and BS 1004B, respectively, alloy No2, ILZRO,.16 and two newer alloys ACuZinc5 and ACuZinc10 was investigated. The total creep contraction of the alloys was found to be well correlated using an empirical equation. On the basis of this equation, a parametrical relationship was derived which allowed the total creep contraction to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of compressive creep of the alloys could be made under different testing conditions. The primary creep and secondary creep rates were found for the alloys at different temperatures and stresses. Generally, the primary creep contraction was found to increase with copper content, whereas secondary creep rates decreased in the order No3, ACuZinc10, ACuZinc5 and No2. ILZRO.16 was tested only at the highest stress and two higher temperatures. The results showed that ILZRO.16 had higher creep resistance than all the other alloys. Thus, based on the above empirical equation, alloy No2 was found to have a substantially better total creep resistance than alloys No3 and No5, and slightly better than ACuZinc5 and ACuZinc10 for strains up to 1%. Both ACuZinc alloys had higher creep strength than commercial alloys No3 and No5. Alloy No5 had much higher creep resistance than alloy No3 under all conditions. The superior creep resistance of alloy No2 was considered to be due to the presence of small precipitates of -phase in the zinc matrix and a regular eutectic morphology. The stress exponents and activation energies for creep under different testing conditions were found to be consistent with some established creep-controlling mechanisms; i.e. dislocation climb for alloy No3, dislocation climb over second phase particles for alloys No5, No2, ACuZinc10, controlled by lattice diffusion in the zinc-rich phase. The lower creep resistance of alloy No3 was mainly due to the lower creep strength of copper-free primary particles having greater volume than eutectic in the microstructure. Alloys No5, ACuZinc5 and ACuZinc10 showed much better creep resistance than alloy No3, based on the precipitation-hardening due to the presence of small -phase precipitates. The primary dendrites in both ACuZinc alloys however were not of much benefit in improving the creep resistance of the alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo) is a dual phase (α + β) alloy in the as-received pressure tube condition. It has been proposed to be the pressure tube candidate material for the Generation-IV CANDU-Supercritical Water Reactor (CANDU-SCWR). In this dissertation, the effects of heavy ion irradiation, deformation and heat treatment on the microstructures of the alloy were investigated to enable us to have a better understanding of the potential in-reactor performance of this alloy. In-situ heavy ion (1 MeV) irradiation was performed to study the nucleation and evolution of dislocation loops in both α- and β-Zr. Small and dense type dislocation loops form under irradiation between 80 and 450 °C. The number density tends to saturate at ~ 0.1 dpa. Compared with the α-Zr, the defect yield is much lower in β-Zr. The stabilities of the metastable phases (β-Zr and ω-Zr) and the thermal-dynamically equilibrium phase, fcc Zr(Mo, Nb)2, under irradiation were also studied at different temperatures. Chemi-STEM elemental mapping was carried out to study the elemental redistribution caused by irradiation. The stability of these phases and the elemental redistribution are strongly dependent on irradiation temperature. In-situ time-of-flight neutron diffraction tensile and compressive tests were carried out at different temperatures to monitor lattice strain evolutions of individual grain families during these tests. The β-Zr is the strengthening phase in this alloy in the as-received plate material. Load is transferred to the β-Zr after yielding of the α-Zr grains. The temperature dependence of static strain aging and the yielding sequence of the individual grain families were discussed. Strong tensile/compressive asymmetry was observed in the {0002} grain family at room temperature. The microstructures of the sample deformed at 400 °C and the samples only subjected to heat treatment at the same temperature were characterized with TEM. Concentration of β phase stabilizers in the β grain and the morphology of β grain have significant effect on the stability of β- and ω-Zr under thermal treatment. Applied stress/strain enhances the decomposition of isothermal ω phase but suppresses α precipitation inside the β grains at high temperature. An α → ω/ZrO phase transformation was observed in the thin foils of Zr-Excel alloy and pure Zr during in-situ heating at 700 °C in TEM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mercury-indium phase diagram has been investigated over the whole composition range from -78°C to the melting point of indium, using thermal analysis, X-ray and superconductivity techniques. This is believed to be the first application of superconductivity measurements to phase diagram investigations. A compound, HgIn, of very limited range of composition, melts congruently at -19.3°C; and gives rise to eutectics at 61.5 at. % indium and -31°C, and at 34.7% indium and -37.2°C. The β phase extends from 2.5 to 19.1 % indium and has a maximum melting point of -14.2°C at 14.2% indium. It forms a peritectic or eutectic at a temperature indistinguishable from the melting point of pure mercury with a solid solution in mercury containing some, but less than 0.3%, indium. A transition from face-centred tetragonal to face-centred cubic in the indium-rich solid solutions at about 93% indium gives rise to a peritectic at 108°C. The solubility of mercury in this face-centred cubic phase falls from about 22% at-31°C to 13% at -78°C. © 1963.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nicaragua importa semilla de pasto con el objetivo de resolver la baja productividad y calidad del pasto. Las especies Brachiaria brizantha y Panicum maximun, son las semilla de pasto de mayor importación en nuestro país, siendo Brasil el país de donde más importamos. Basados en que existen algunas plagas en Brasil que no existen en Nicaragua, se procedió a realizar un análisis de riesgo de plaga, el cual es una herramienta que permite evaluar la entrada, establecimiento, dispersión y manejo del riesgo de la plaga. Las etapas del análisis de riesgo de plaga; se realizó con la recopilación y análisis de información clave de fuente primaria y secundaria como son la lista de plagas asociadas al cultivo de pasto de Brasil, lista oficial de plagas asociadas al cultivo pasto en Nicaragua, diagnóstico fitosanitario en plantaciones de pasto B. brizantha en Nicaragua y los resultados de laboratorio de las semilla de pasto de origen Brasil que ingresaron por el país en el 2014. Este estudio se realizó en un período de 12 meses de Enero a Diciembre del 2014, en la Región Autónoma del Caribe Sur (RACS), en el municipio de El Rama y dos departamentos Chontales y Rio San Juan en los municipios de La Gateada y San Miguelito respectivamente, ya que son representativos, son las zonas de mayor producción de pasto, y en los doce puesto de cuarentena agropecuaria del territorio nacional, El Guasaule, Puerto Corinto, Aduana Central Aérea, Las Manos, El Espino, Peñas Blancas, Teotecacinte, Aeropuerto Internacional Augusto César Sandino, El Rama, El Bluff, San Carlos y San Juan de Nicaragua, que es donde ingresan las importaciones de semilla de pasto de origen Brasil. El muestreo fue al azar, tanto para el diagnóstico fitosanitario como para las importaciones de semilla de pasto de origen Brasil, tomando muestras para ser analizadas en los laboratorios de herbología, entomología, micología, bacteriología y nematología. El diagnóstico fitosanitario, permitió corroborar la presencia de plagas mencionadas en la lista oficial de plagas asociadas al cultivo pasto en Nicaragua y descartar presencias de plagas cuarentenarias en los pasto de nuestro país. En las semilla de pasto importadas de Brasil, se determino la presencia de plagas de interés cuarentenario como son la maleza Commelina benghalensis y nemátodo de punta blanca Aphelenchoides besseyi. En el análisis de riesgo de plaga, se identificaron siete plagas de interés cuarentenario para la especie B. brizantha y noventa y uno plagas para la especie P. maximun, al evaluar cada plaga por la posibilidad de seguir la vía de entrada, se determinaron dos plagas de importancia cuarentenarias para el área del análisis de riesgo de plagas, como son la maleza Commelina benghalensis L. y nemátodo de punta blanca Aphelenchoides besseyi Ch., ya que son plagas consideradas de alto riesgo fitosanitario debido a la posibilidades de sobrevivir, multiplicarse y diseminarse en el ambiente de Nicaragua una vez introducida en nuevas aéreas establecidas, de acuerdo a la evaluación del riesgo de establecimiento y dispersión; es por eso que en ambas plagas se determinaron las opciones del manejo del riesgo para disminuir a niveles adecuados los riesgo de dichas plagas para nuestro país.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of biomaterial surfaces and their influence on cell behavior provide insights concerning the design of surface physicochemical and topography properties of implant materials. Fabrication of biocompatible metal oxide nanotubes on metallic biomaterials, especially titanium alloys such as Ti50Zr via anodization, alters the surface chemistry as well as surface topography of the alloy. In this study, four groups of TiO2-ZrO2-ZrTiO4 nanotubes that exhibit diverse nanoscale dimensional characteristics (i.e. inner diameter Di, outer diameter Do and wall thicknesses Wt) were fabricated via anodization. The nanotubes were annealed and characterized using scanning electron microscopy and 3-D profilometry. The potential applied during anodization influenced the oxidation rate of titanium and zirconium, thereby resulting in different nanoscale characteristics for the nanotubes. The different oxidation and dissolution rates both led to changes in the surface roughness parameters. The in vitro cell response to the nanotubes with different nanoscale dimensional characteristics was assessed using osteoblast cells (SaOS2). The results of the MTS assay indicated that the nanotubes with inner diameter (Di)≈40nm exhibited the highest percentage of cell adhesion of 41.0%. This result can be compared to (i) 25.9% cell adhesion at Di≈59nm, (ii) 33.1% at Di≈64nm, and (iii) 33.5% at Di≈82nm. The nanotubes with Di≈59nm exhibited the greatest roughness parameter of Sa (mean roughness), leading to the lowest ability to interlock with SaOS2 cells.