979 resultados para zeros of Hermite polynomials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using a symbolic method, known in the literature as the classical umbral calculus, a symbolic representation of Lévy processes is given and a new family of time-space harmonic polynomials with respect to such processes, which includes and generalizes the exponential complete Bell polynomials, is introduced. The usefulness of time-space harmonic polynomials with respect to Lévy processes is that it is a martingale the stochastic process obtained by replacing the indeterminate x of the polynomials with a Lévy process, whereas the Lévy process does not necessarily have this property. Therefore to find such polynomials could be particularly meaningful for applications. This new family includes Hermite polynomials, time-space harmonic with respect to Brownian motion, Poisson-Charlier polynomials with respect to Poisson processes, Laguerre and actuarial polynomials with respect to Gamma processes , Meixner polynomials of the first kind with respect to Pascal processes, Euler, Bernoulli, Krawtchuk, and pseudo-Narumi polynomials with respect to suitable random walks. The role played by cumulants is stressed and brought to the light, either in the symbolic representation of Lévy processes and their infinite divisibility property, either in the generalization, via umbral Kailath-Segall formula, of the well-known formulae giving elementary symmetric polynomials in terms of power sum symmetric polynomials. The expression of the family of time-space harmonic polynomials here introduced has some connections with the so-called moment representation of various families of multivariate polynomials. Such moment representation has been studied here for the first time in connection with the time-space harmonic property with respect to suitable symbolic multivariate Lévy processes. In particular, multivariate Hermite polynomials and their properties have been studied in connection with a symbolic version of the multivariate Brownian motion, while multivariate Bernoulli and Euler polynomials are represented as powers of multivariate polynomials which are time-space harmonic with respect to suitable multivariate Lévy processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to contribute to the understanding of complex polynomials and Blaschke products, two very important function classes in mathematics. For a polynomial, $f,$ of degree $n,$ we study when it is possible to write $f$ as a composition $f=g\circ h$, where $g$ and $h$ are polynomials, each of degree less than $n.$ A polynomial is defined to be \emph{decomposable }if such an $h$ and $g$ exist, and a polynomial is said to be \emph{indecomposable} if no such $h$ and $g$ exist. We apply the results of Rickards in \cite{key-2}. We show that $$C_{n}=\{(z_{1},z_{2},...,z_{n})\in\mathbb{C}^{n}\,|\,(z-z_{1})(z-z_{2})...(z-z_{n})\,\mbox{is decomposable}\},$$ has measure $0$ when considered a subset of $\mathbb{R}^{2n}.$ Using this we prove the stronger result that $$D_{n}=\{(z_{1},z_{2},...,z_{n})\in\mathbb{C}^{n}\,|\,\mbox{There exists\,}a\in\mathbb{C}\,\,\mbox{with}\,\,(z-z_{1})(z-z_{2})...(z-z_{n})(z-a)\,\mbox{decomposable}\},$$ also has measure zero when considered a subset of $\mathbb{R}^{2n}.$ We show that for any polynomial $p$, there exists an $a\in\mathbb{C}$ such that $p(z)(z-a)$ is indecomposable, and we also examine the case of $D_{5}$ in detail. The main work of this paper studies finite Blaschke products, analytic functions on $\overline{\mathbb{D}}$ that map $\partial\mathbb{D}$ to $\partial\mathbb{D}.$ In analogy with polynomials, we discuss when a degree $n$ Blaschke product, $B,$ can be written as a composition $C\circ D$, where $C$ and $D$ are finite Blaschke products, each of degree less than $n.$ Decomposable and indecomposable are defined analogously. Our main results are divided into two sections. First, we equate a condition on the zeros of the Blaschke product with the existence of a decomposition where the right-hand factor, $D,$ has degree $2.$ We also equate decomposability of a Blaschke product, $B,$ with the existence of a Poncelet curve, whose foci are a subset of the zeros of $B,$ such that the Poncelet curve satisfies certain tangency conditions. This result is hard to apply in general, but has a very nice geometric interpretation when we desire a composition where the right-hand factor is degree 2 or 3. Our second section of finite Blaschke product results builds off of the work of Cowen in \cite{key-3}. For a finite Blaschke product $B,$ Cowen defines the so-called monodromy group, $G_{B},$ of the finite Blaschke product. He then equates the decomposability of a finite Blaschke product, $B,$ with the existence of a nontrivial partition, $\mathcal{P},$ of the branches of $B^{-1}(z),$ such that $G_{B}$ respects $\mathcal{P}$. We present an in-depth analysis of how to calculate $G_{B}$, extending Cowen's description. These methods allow us to equate the existence of a decomposition where the left-hand factor has degree 2, with a simple condition on the critical points of the Blaschke product. In addition we are able to put a condition of the structure of $G_{B}$ for any decomposable Blaschke product satisfying certain normalization conditions. The final section of this paper discusses how one can put the results of the paper into practice to determine, if a particular Blaschke product is decomposable. We compare three major algorithms. The first is a brute force technique where one searches through the zero set of $B$ for subsets which could be the zero set of $D$, exhaustively searching for a successful decomposition $B(z)=C(D(z)).$ The second algorithm involves simply examining the cardinality of the image, under $B,$ of the set of critical points of $B.$ For a degree $n$ Blaschke product, $B,$ if this cardinality is greater than $\frac{n}{2}$, the Blaschke product is indecomposable. The final algorithm attempts to apply the geometric interpretation of decomposability given by our theorem concerning the existence of a particular Poncelet curve. The final two algorithms can be implemented easily with the use of an HTML

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was presented in part at the 8th International Conference on Finite Fields and Applications Fq^8 , Melbourne, Australia, 9-13 July, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 30C10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 33C45, 40G05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method for leaf vein shape characterization using Hermite polynomial cubic representation. The elements associated with this representation are used as secondary vein descriptors and their discriminatory potential are analyzed based on the identification of two legume species (Lonchocarpus muehlbergianus Hassl. and L. subglaucescens Mart, ex Benth.). The elements of Hermite geometry influence a curve along all its extension allowing a global description of the secondary vein course by a descriptor of low dimensionality. The obtained results shown the analyzed species can be discriminated by this method and it can be used in addition to commonly considered elements in the taxonomic process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of semialgebraic Lipschitz classification of quasihomogeneous polynomials on a Holder triangle is studied. For this problem, the ""moduli"" are described completely in certain combinatorial terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fully explicit formula for the eigenvalues of Casimir invariants for U-q(gl(m/n)) is given which applies to all unitary irreps. This is achieved by making some interesting observations on atypicality indices for irreps occurring in the tensor product of unitary irreps of the same type. These results have applications in the determination of link polynomials arising from unitary irreps of U-q(gl(m/n)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For an interval map, the poles of the Artin-Mazur zeta function provide topological invariants which are closely connected to topological entropy. It is known that for a time-periodic nonautonomous dynamical system F with period p, the p-th power [zeta(F) (z)](p) of its zeta function is meromorphic in the unit disk. Unlike in the autonomous case, where the zeta function zeta(f)(z) only has poles in the unit disk, in the p-periodic nonautonomous case [zeta(F)(z)](p) may have zeros. In this paper we introduce the concept of spectral invariants of p-periodic nonautonomous discrete dynamical systems and study the role played by the zeros of [zeta(F)(z)](p) in this context. As we will see, these zeros play an important role in the spectral classification of these systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory of orthogonal polynomials of one real or complex variable is well established as well as its generalization for the multidimensional case. Hypercomplex function theory (or Clifford analysis) provides an alternative approach to deal with higher dimensions. In this context, we study systems of orthogonal polynomials of a hypercomplex variable with values in a Clifford algebra and prove some of their properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this note we give a numerical characterization of hypersurface singularities in terms of the normalized Hilbert-Samuel coefficients, and we interpret this result from the point of view of rigid polynomials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum states can be used to encode the information contained in a direction, i.e., in a unit vector. We present the best encoding procedure when the quantum state is made up of N spins (qubits). We find that the quality of this optimal procedure, which we quantify in terms of the fidelity, depends solely on the dimension of the encoding space. We also investigate the use of spatial rotations on a quantum state, which provide a natural and less demanding encoding. In this case we prove that the fidelity is directly related to the largest zeros of the Legendre and Jacobi polynomials. We also discuss our results in terms of the information gain.