974 resultados para wind generation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (−22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As electricity systems incorporate increasing levels of variable renewable generation, conventional plant will be required to operate more flexibly, with potential impacts for economic viability and reliability. Northern Ireland is pursuing an ambitious target of 40% of electricity to be supplied from renewable sources by 2020. The dominant source of this energy is anticipated to come from inherently variable wind power, one of the most mature renewable technologies. Conventional thermal generators will have a significant role to play in maintaining security of supply. However, running conventional generation more flexibly in order to cater for a wind led regime can reduce its efficiency, as well as shortening its lifespan and increasing O&M costs. This paper examines the impacts of variable operation on existing fossil fuel based generators, with a particular focus on Northern Ireland. Access to plant operators and industry experts has provided insight not currently evident in the energy literature. Characteristics of plant operation and the market framework are identified that present significant challenges in moving to the proposed levels of wind penetration. Opportunities for increasing flexible operation are proposed and future research needs identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of climate change on wind power generation potentials over Europe is investigated by considering ensemble projections from two regional climate models (RCMs) driven by a global climate model (GCM). Wind energy density and its interannual variability are estimated based on hourly near-surface wind speeds. Additionally, the possible impact of climatic changes on the energy output of a sample 2.5-MW turbine is discussed. GCM-driven RCM simulations capture the behavior and variability of current wind energy indices, even though some differences exist when compared with reanalysis-driven RCM simulations. Toward the end of the twenty-first century, projections show significant changes of energy density on annual average across Europe that are substantially stronger in seasonal terms. The emergence time of these changes varies from region to region and season to season, but some long-term trends are already statistically significant in the middle of the twenty-first century. Over northern and central Europe, the wind energy potential is projected to increase, particularly in winter and autumn. In contrast, energy potential over southern Europe may experience a decrease in all seasons except for the Aegean Sea. Changes for wind energy output follow the same patterns but are of smaller magnitude. The GCM/RCM model chains project a significant intensification of both interannual and intra-annual variability of energy density over parts of western and central Europe, thus imposing new challenges to a reliable pan-European energy supply in future decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatially dense observations of gust speeds are necessary for various applications, but their availability is limited in space and time. This work presents an approach to help to overcome this problem. The main objective is the generation of synthetic wind gust velocities. With this aim, theoretical wind and gust distributions are estimated from 10 yr of hourly observations collected at 123 synoptic weather stations provided by the German Weather Service. As pre-processing, an exposure correction is applied on measurements of the mean wind velocity to reduce the influence of local urban and topographic effects. The wind gust model is built as a transfer function between distribution parameters of wind and gust velocities. The aim of this procedure is to estimate the parameters of gusts at stations where only wind speed data is available. These parameters can be used to generate synthetic gusts, which can improve the accuracy of return periods at test sites with a lack of observations. The second objective is to determine return periods much longer than the nominal length of the original time series by considering extreme value statistics. Estimates for both local maximum return periods and average return periods for single historical events are provided. The comparison of maximum and average return periods shows that even storms with short average return periods may lead to local wind gusts with return periods of several decades. Despite uncertainties caused by the short length of the observational records, the method leads to consistent results, enabling a wide range of possible applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of flow and current vortices in the dayside auroral ionosphere has been predicted for two processes ocurring at the dayside magnetopause. The first of these mechanisms is time-dependent magnetic reconnection, in “flux transfer events” (FTEs); the second is the action of solar wind dynamic pressure changes. The ionospheric flow signature of an FTE should be a twin vortex, with the mean flow velocity in the central region of the pattern equal to the velocity of the pattern as a whole. On the other hand, a pulse of enhanced or reduced dynamic pressure is also expected to produce a twin vortex, but with the central plasma flow being generally different in speed from, and almost orthogonal to, the motion of the whole pattern. In this paper, we make use of this distinction to discuss recent observations of vortical flow patterns in the dayside auroral ionosphere in terms of one or other of the proposed mechanisms. We conclude that some of the observations reported are consistent only with the predicted signature of FTEs. We then evaluate the dimensions of the open flux tubes required to explain some recent simultaneous radar and auroral observations and infer that they are typically 300 km in north–south extent but up to 2000 km in longitudinal extent (i.e., roughly 5 hours of MLT). Hence these observations suggest that recent theories of FTEs which invoke time-varying reconnection at an elongated neutral line may be correct. We also present some simultaneous observations of the interplanetary magnetic field (IMF) and solar wind dynamic pressure (observed using the IMP8 satellite) and the ionospheric flow (observed using the EISCAT radar) which are also only consistent with the FTE model. We estimate that for continuously southward IMF ( ≈ 5 nT) these FTEs contribute about 30 kV to the mean total transpolar voltage (∼30%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency’s New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterised by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterised by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased concern for the impacts of climate change on the environment, along with the growing industry of renewable energy sources, and especially wind power, has made the valuation of environmental services and goods of great significance. Offshore wind energy is being exploited exponentially and its importance for renewable energy generation is increasing. We apply a double-bound dichotomous Contingent Valuation Method analysis in order to both a) estimating the Willingness to Pay (WTP) of Greek residents for green electricity produced by offshore wind farm located between the islands of Tinos and Andros and b) identifying factors behind respondents’ WTP including individual’s behaviour toward environment and individual’s views on climate change and renewable energy. A total of 141 respondents participated in the questionnaire. Results show that the respondents are willing to pay on average 20€ every two months through their electricity bill in return for carbon-free electricity and water saving from the wind farm. Respondents’ environmental consciousness and their perception towards climate change and renewable energy have a positive effect on their WTP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decadal predictions on timescales from one year to one decade are gaining importance since this time frame falls within the planning horizon of politics, economy and society. The present study examines the decadal predictability of regional wind speed and wind energy potentials in three generations of the MiKlip (‘Mittelfristige Klimaprognosen’) decadal prediction system. The system is based on the global Max-Planck-Institute Earth System Model (MPI-ESM), and the three generations differ primarily in the ocean initialisation. Ensembles of uninitialised historical and yearly initialised hindcast experiments are used to assess the forecast skill for 10 m wind speeds and wind energy output (Eout) over Central Europe with lead times from one year to one decade. With this aim, a statistical-dynamical downscaling (SDD) approach is used for the regionalisation. Its added value is evaluated by comparison of skill scores for MPI-ESM large-scale wind speeds and SDD-simulated regional wind speeds. All three MPI-ESM ensemble generations show some forecast skill for annual mean wind speed and Eout over Central Europe on yearly and multi-yearly time scales. This forecast skill is mostly limited to the first years after initialisation. Differences between the three ensemble generations are generally small. The regionalisation preserves and sometimes increases the forecast skills of the global runs but results depend on lead time and ensemble generation. Moreover, regionalisation often improves the ensemble spread. Seasonal Eout skills are generally lower than for annual means. Skill scores are lowest during summer and persist longest in autumn. A large-scale westerly weather type with strong pressure gradients over Central Europe is identified as potential source of the skill for wind energy potentials, showing a similar forecast skill and a high correlation with Eout anomalies. These results are promising towards the establishment of a decadal prediction system for wind energy applications over Central Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, distributed generation, with its various technologies, has increased its presence in the energy mix presenting distribution networks with challenges in terms of evaluating the technical impacts that require a wide range of network operational effects to be qualified and quantified. The inherent time-varying behavior of demand and distributed generation (particularly when renewable sources are used), need to be taken into account since considering critical scenarios of loading and generation may mask the impacts. One means of dealing with such complexity is through the use of indices that indicate the benefit or otherwise of connections at a given location and for a given horizon. This paper presents a multiobjective performance index for distribution networks with time-varying distributed generation which consider a number of technical issues. The approach has been applied to a medium voltage distribution network considering hourly demand and wind speeds. Results show that this proposal has a better response to the natural behavior of loads and generation than solely considering a single operation scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incentives for using wind power and the increasing price of energy might generate in a relatively short time a scenario where low voltage customers opt to install roof-top wind turbines. This paper focuses on evaluating the effects of such situation in terms of energy consumption, loss reduction, reverse power flow and voltage profiles. Various commercially-available roof-top wind turbines are installed in two secondary distribution circuits considering real-life wind speed data and seasonal load demand. Results are presented and discussed. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend the Miles mechanism of wind-wave generation to finite depth. A beta-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of beta is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the beta-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrodinger equation is derived and the Akhmediev, Peregrine and Kuznetsov-Ma breather solutions for weak wind inputs in finite depth h are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the wake of current global image involving environmental impacts, the use of wind power has had a remarkable growth in recent years as a technique for generating electricity. In fact, it is a source featuring strong dissemination of technology which provides decrease in costs and a greater access to low-income electricity. PROINFA (Incentive Program for Alternative Energy Sources) promotes a greater diffusion of new technologies for power generation, in particular wind-produced. Due to such a scenario on the exploitation of such energy source, current analysis discusses strategies for the development of domestic wind technology and the implications for electricity-lacking rural areas. Analysis shows a similar behavior between rural populations lacking electricity and the amount of potential energy available in the region. It is expected that this assay will contribute towards the establishment of public policies for wind-energy parks on rural farms in the North and Northeast regions of Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators (IGs) in large interconnected power systems is presented in this study. The low-voltage-ride-through (LVRT) capability is provided by extending the range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralised multi-variable controllers for large interconnected power systems using the linear quadratic (LQ) output-feedback control design method and the controller design procedure is formulated as an optimisation problem involving rank-constrained linear matrix inequality (LMI). In this study, it is shown that a static synchronous compensator (STATCOM) with energy storage system (ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Filaments are narrow, shallow structures of cool water originating from the coast. They are typical features of the four main eastern boundary upwelling systems (EBUS). In spite of their significant biological and chemical roles, through the offshore exportation of nutrient-rich waters, the physical processes that generate them are still not completely understood. This paper is a process-oriented study of filament generation mechanisms. Our goal is twofold: firstly, to obtain a numerical solution able to well represent the characteristics of the filament off Cape Ghir (30°38'N, northwestern Africa) in the Canary EBUS and secondly, to explain its formation by a simple mechanism based on the balance of potential vorticity. The first goal is achieved by the use of the ROMS model (Regional Ocean Modeling System) in embedded domains around Cape Ghir, with a horizontal resolution going up to 1.5 km for the finest domain. The latter gets its initial and boundary conditions from a parent solution and is forced by climatological, high-resolution atmospheric fields. The modeled filaments display spatial, temporal and physical characteristics in agreement with the available in situ and satellite observations. This model solution is used as a reference to compare the results with a set of process-oriented experiments. These experiments allow us to reach the second objective. Their respective solution serves to highlight the contribution of various processes in the filament generation. Since the study is focused on general processes present under climatological forcing conditions, inter-annual forcing is not necessary. The underlying idea for the filament generation is the balance of potential vorticity in the Canary EBUS: the upwelling jet is characterized by negative relative vorticity and flows southward along a narrow band of uniform potential vorticity. In the vicinity of the cape, an injection of relative vorticity induced by the wind breaks the existing vorticity balance. The upwelling jet is prevented from continuing its way southward and has to turn offshore to follow lines of equal potential vorticity. The model results highlight the essential role of wind, associated with the particular topography (coastline and bottom) around the cape. The mechanism presented here is general and thus can be applied to other EBUS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]Oceanic eddy generation by tall deep-water islands is common phenomenon. It is recognized that these eddies may have a significant impact on the marine system and related biogeochemical fluxes. Hence, it is important to establish favourable conditions for their generation. With this objective, we present an observational study on eddy generation mechanisms by tall deep-water islands, using as a case study the island of Gran Canaria. Observations show that the main generation mechanism is topographic forcing, which leads to eddy generation when the incident oceanic flow is sufficiently intense. Wind shear at the island wake may acts only as an additional eddy-generation trigger mechanism when the impinging oceanic flow is not sufficiently intense. For the case of the island of Gran Canaria we have observed a mean of ten generated cyclonic eddies per year. Eddies are more frequently generated in summer coinciding with intense Trade winds and Canary Current.