977 resultados para vascular cells


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by which CaMKII activates MAPK is unclear. The present study was conducted to determine the contribution of AA and its metabolites as possible mediators of CaMKII-induced MAPK activation by NE, Ang II, and epidermal growth factor (EGF) in vascular smooth muscle cells. NE-, Ang II-, and EGF-stimulated MAPK and cPLA2 were reduced by inhibitors of cytochrome P450 (CYP450) and lipoxygenase but not by cyclooxygenase. NE-, Ang II-, and EGF-induced increases in Ras activity, measured by its translocation to plasma membrane, were abolished by CYP450, lipoxygenase, and farnesyltransferase inhibitors. An AA metabolite of CYP450, 20-hydroxyeicosatetraenoic acid (20-HETE), increased the activities of MAPK and cPLA2 and caused translocation of Ras. These data suggest that activation of MAPK by NE, Ang II, and EGF is mediated by a signaling mechanism involving 20-HETE, which is generated by stimulation of cPLA2 by CaMKII. Activation of Ras/MAPK by 20-HETE amplifies cPLA2 activity and releases additional AA by a positive feedback mechanism. This mechanism of Ras/MAPK activation by 20-HETE may play a central role in the regulation of other cellular signaling molecules involved in cell proliferation and growth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Endothelial-selective delivery of therapeutic agents, such as drugs or genes, would provide a useful tool for modifying vascular function in various disease states. A potential molecular target for such delivery is E-selectin, an endothelial-specific cell surface molecule expressed at sites of activation in vivo and inducible in cultured human umbilical vein endothelial cells (HUVEC) by treatment with cytokines such as recombinant human interleukin 1β (IL-1β). Liposomes of various types (classical, sterically stabilized, cationic, pH-sensitive), each conjugated with mAb H18/7, a murine monoclonal antibody that recognizes the extracellular domain of E-selectin, bound selectively and specifically to IL-1β-activated HUVEC at levels up to 275-fold higher than to unactivated HUVEC. E-selectin-targeted immunoliposomes appeared in acidic, perinuclear vesicles 2–4 hr after binding to the cell surface, consistent with internalization via the endosome/lysosome pathway. Activated HUVEC incubated with E-selectin-targeted immunoliposomes, loaded with the cytotoxic agent doxorubicin, exhibited significantly decreased cell survival, whereas unactivated HUVEC were unaffected by such treatment. These results demonstrate the feasibility of exploiting cell surface activation markers for the endothelial-selective delivery of biologically active agents via immunoliposomes. Application of this targeting approach in vivo may lead to novel therapeutic strategies in the treatment of cardiovascular disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hemodynamic abnormalities have been implicated in the pathogenesis of the increased glomerular permeability to protein of diabetic and other glomerulopathies. Vascular permeability factor (VPF) is one of the most powerful promoters of vascular permeability. We studied the effect of stretch on VPF production by human mesangial cells and the intracellular signaling pathways involved. The application of mechanical stretch (elongation 10%) for 6 h induced a 2.4-fold increase over control in the VPF mRNA level (P < 0.05). There was a corresponding 3-fold increase in VPF protein level by 12 h (P < 0.001), returning to the baseline by 24 h. Stretch-induced VPF secretion was partially prevented both by the protein kinase C (PKC) inhibitor H7 (50 μM: 72% inhibition, P < 0.05) and by pretreatment with phorbol ester (phorbol-12-myristate-13 acetate 10−7 M: 77% inhibition, P < 0.05). A variety of protein tyrosine kinase (PTK) inhibitors, genistein (20 μg/ml), herbimycin A (3.4 μM), and a specific pp60src peptide inhibitor (21 μM) also significantly reduced, but did not entirely prevent, stretch-induced VPF protein secretion (respectively 63%, 80%, and 75% inhibition; P < 0.05 for all). The combination of both PKC and PTK inhibition completely abolished the VPF response to mechanical stretch (100% inhibition, P < 0.05). Stretch induces VPF gene expression and protein secretion in human mesangial cells via PKC- and PTK-dependent mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The existence of a common precursor for endothelial and hemopoietic cells, termed the hemangioblast, has been postulated since the beginning of the century. Recently, deletion of the endothelial-specific vascular endothelial growth factor receptor 2 (VEGFR2) by gene targeting has shown that both endothelial and hemopoietic cells are absent in homozygous null mice. This observation suggested that VEGFR2 could be expressed by the hemangioblast and essential for its further differentiation along both lineages. However, it was not possible to exclude the hypothesis that hemopoietic failure was a secondary effect resulting from the absence of an endothelial cell microenvironment. To distinguish between these two hypotheses, we have produced a mAb directed against the extracellular domain of avian VEGFR2 and isolated VEGFR2+ cells from the mesoderm of chicken embryos at the gastrulation stage. We have found that in clonal cultures, a VEGFR2+ cell gives rise to either a hemopoietic or an endothelial cell colony. The developmental decision appears to be regulated by the binding of two different VEGFR2 ligands. Thus, endothelial differentiation requires VEGF, whereas hemopoietic differentiation occurs in the absence of VEGF and is significantly reduced by soluble VEGFR2, showing that this process could be mediated by a second, yet unidentified, VEGFR2 ligand. These observations thus suggest strongly that in the absence of the VEGFR2 gene product, the precursors of both hemopoietic and vascular endothelial lineages cannot survive. These cells therefore might be the initial targets of the VEGFR2 null mutation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Enhanced activity of receptor tyrosine kinases such as the PDGF β-receptor and EGF receptor has been implicated as a contributing factor in the development of malignant and nonmalignant proliferative diseases such as cancer and atherosclerosis. Several epidemiological studies suggest that green tea may prevent the development of cancer and atherosclerosis. One of the major constituents of green tea is the polyphenol epigallocathechin-3 gallate (EGCG). In an attempt to offer a possible explanation for the anti-cancer and anti-atherosclerotic activity of EGCG, we examined the effect of EGCG on the PDGF-BB–, EGF-, angiotensin II-, and FCS-induced activation of the 44 kDa and 42 kDa mitogen-activated protein (MAP) kinase isoforms (p44mapk/p42mapk) in cultured vascular smooth muscle cells (VSMCs) from rat aorta. VSMCs were treated with EGCG (1–100 μM) for 24 h and stimulated with the above mentioned agonists for different time periods. Stimulation of the p44mapk/p42mapk was detected by the enhanced Western blotting method using phospho-specific MAP kinase antibodies that recognized the Tyr204-phosphorylated (active) isoforms. Treatment of VSMCs with 10 and 50 μM EGCG resulted in an 80% and a complete inhibition of the PDGF-BB–induced activation of MAP kinase isoforms, respectively. In striking contrast, EGCG (1–100 μM) did not influence MAP kinase activation by EGF, angiotensin II, and FCS. Similarly, the maximal effect of PDGF-BB on the c-fos and egr-1 mRNA expression as well as on intracellular free Ca2+ concentration was completely inhibited in EGCG-treated VSMCs, whereas the effect of EGF was not affected. Quantification of the immunoprecipitated tyrosine-phosphorylated PDGF-Rβ, phosphatidylinositol 3′-kinase, and phospholipase C-γ1 by the enhanced Western blotting method revealed that EGCG treatment effectively inhibits tyrosine phosphorylation of these kinases in VSMCs. Furthermore, we show that spheroid formation of human glioblastoma cells (A172) and colony formation of sis-transfected NIH 3T3 cells in semisolid agar are completely inhibited by 20–50 μM EGCG. Our findings demonstrate that EGCG is a selective inhibitor of the tyrosine phosphorylation of PDGF-Rβ and its downstream signaling pathway. The present findings may partly explain the anti-cancer and anti-atherosclerotic activity of green tea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The carboxyl-terminal domain of thrombospondin-1 enhances the migration and proliferation of smooth muscle cells. Integrin-associated protein (IAP or CD47) is a receptor for the thrombospondin-1 carboxyl-terminal cell-binding domain and binds the agonist peptide 4N1K (kRFYVVMWKk) from this domain. 4N1K peptide stimulates chemotaxis of both human and rat aortic smooth muscle cells on gelatin-coated filters. The migration on gelatin is specifically blocked by monoclonal antibodies against IAP and a β1 integrin, rather than αvβ3 as found previously for 4N1K-stimulated chemotaxis of endothelial cells on gelatin. Both human and rat smooth muscle cells displayed a weak migratory response to soluble type I collagen; however, the presence of 4N1K peptide or intact thrombospondin-1 provoked a synergistic chemotactic response that was partially blocked by antibodies to α2 and β1 integrin subunits and to IAP. A combination of antiα2 and IAP monoclonal antibodies completely blocked chemotaxis. RGD peptide and antiαvβ3 mAb were without effect. 4N1K and thrombospondin-1 did not augment the chemotactic response of smooth muscle cells to fibronectin, vitronectin, or collagenase-digested type I collagen. Complex formation between α2β1 and IAP was detected by the coimmunoprecipitation of both α2 and β1 integrin subunits with IAP. These data suggest that IAP can associate with α2β1 integrin and modulate its function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mast cells have been implicated in various diseases that are accompanied by neovascularization. The exact mechanisms by which mast cells might mediate an angiogenic response, however, are unclear and therefore, we have investigated the possible expression of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in the human mast cell line HMC-1 and in human skin mast cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that mast cells constitutively express VEGF121, VEGF165, and VEGF189. After a prolonged stimulation of cells for 24 h with phorbol 12-myristate 13-acetate (PMA) and the ionophore A23187, an additional transcript representing VEGF206 was detectable, as could be verified by sequence analysis. These results were confirmed at the protein level by Western blot analysis. When the amounts of VEGF released under unstimulated and stimulated conditions were compared, a significant increase was detectable after stimulation of cells. Human microvascular endothelial cells (HMVEC) responded to the supernatant of unstimulated HMC-1 cells with a dose-dependent mitogenic effect, neutralizable up to 90% in the presence of a VEGF-specific monoclonal antibody. Flow cytometry and postembedding immunoelectron microscopy were used to detect VEGF in its cell-associated form. VEGF was exclusively detectable in the secretory granules of isolated human skin mast cells. These results show that both normal and leukemic human mast cells constitutively express bioactive VEGF. Furthermore, this study contributes to the understanding of the physiological role of the strongly heparin-binding VEGF isoforms, since these were found for the first time to be expressed in an activation-dependent manner in HMC-1 cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

FLK-1/vascular endothelial growth factor receptor 2 (VEGFR-2) is one of the receptors for VEGF. In this study we examined the effect of cell density on activation of VEGFR-2. VEGF induces only very slight tyrosine phosphorylation of VEGFR-2 in confluent (95–100% confluent) pig aortic endothelial (PAE) cells. In contrast, robust VEGF-dependent tyrosine phosphorylation of VEGFR-2 was observed in cells plated in sparse culture conditions (60–65% confluent). A similar cell density-dependent phenomenon was observed in different endothelial cells but not in NIH-3T3 fibroblast cells expressing VEGFR-2. Stimulating cells with high concentrations of VEGF or replacing the extracellular domain of VEGFR-2 with that of the colony-stimulating factor 1 receptor did not alleviate the sensitivity of VEGFR-2 to cell density, indicating that the confluent cells were probably not secreting an antagonist to VEGF. Furthermore, in PAE cells, ectopically introduced platelet-derived growth factor α receptor could be activated at both high and low cell density conditions, indicating that the density effect was not universal for all receptor tyrosine kinases expressed in endothelial cells. In addition to lowering the density of cells, removing divalent cations from the medium of confluent cells potentiated VEGFR-2 phosphorylation in response to VEGF. These findings suggested that cell–cell contact may be playing a role in regulating the activation of VEGFR-2. To this end, pretreatment of confluent PAE cells with a neutralizing anti-cadherin-5 antibody potentiated the response of VEGFR-2 to VEGF. Our data demonstrate that endothelial cell density plays a critical role in regulating VEGFR-2 activity, and that the underlying mechanism appears to involve cadherin-5.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phosphatidylinositol 3-kinase (PI 3-kinase) is a signaling molecule that controls numerous cellular properties and activities. The oncogene v-p3k is a homolog of the gene coding for the catalytic subunit of PI 3-kinase, p110α. P3k induces transformation of cells in culture, formation of hemangiosarcomas in young chickens, and myogenic differentiation in myoblasts. Here, we describe a role of PI 3-kinase in angiogenesis. Overexpression of the v-P3k protein or of cellular PI 3-kinase equipped with a myristylation signal, Myr-P3k, can induce angiogenesis in the chorioallantoic membrane (CAM) of the chicken embryo. This process is characterized by extensive sprouting of new blood vessels and enlargement of preexisting vessels. Overexpression of the myristylated form of the PI 3-kinase target Akt, Myr-Akt, also induces angiogenesis. Overexpression of the tumor suppressor PTEN or of dominant-negative constructs of PI 3-kinase inhibits angiogenesis in the yolk sac of chicken embryos, suggesting that PI 3-kinase and Akt signaling is required for normal embryonal angiogenesis. The levels of mRNA for vascular endothelial growth factor (VEGF) are elevated in cells expressing activated PI 3-kinase or Myr-Akt. VEGF mRNA levels are also increased by insulin treatment through the PI 3-kinase-dependent pathway. VEGF mRNA levels are decreased in cells treated with the PI 3-kinase inhibitor LY294002 and restored by overexpression of v-P3k or Myr-Akt. Overexpression of VEGF by the RCAS vector induces angiogenesis in chicken embryos. These results suggest that PI 3-kinase plays an important role in angiogenesis and regulates VEGF expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Connexin (Cx) 43 and Cx40 are coexpressed in several tissues, including cardiac atrial and ventricular myocytes and vascular smooth muscle. It has been shown that these Cxs form homomeric/homotypic channels with distinct permeability and gating properties but do not form functional homomeric/heterotypic channels. If these Cxs were to form heteromeric channels, they could display functional properties not well predicted by the homomeric forms. We assessed this possibility by using A7r5 cells, an embryonic rat aortic smooth muscle cell line that coexpresses Cxs 43 and 40. Connexons (hemichannels), which were isolated from these cells by density centrifugation and immunoprecipitated with antibody against Cx43, contained Cx40. Similarly, antibody against Cx40 coimmunoprecipitated Cx43 from the same connexon fraction but only Cx40 from Cx (monomer) fractions. These results indicate that heteromeric connexons are formed by these Cxs in the A7r5 cells. The gap junction channels formed in the A7r5 cells display many unitary conductances distinct from homomeric/homotypic Cx43 or Cx40 channels. Voltage-dependent gating parameters in the A7r5 cells are also quite variable compared with cells that express only Cx40 or Cx43. These data indicate that Cxs 43 and 40 form functional heteromeric channels with unique gating and conductance properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parathyroid hormone-related protein (PTHrP) is a prohormone that is posttranslationally processed to a family of mature secretory forms, each of which has its own cognate receptor(s) on the cell surface that mediate the actions of PTHrP. In addition to being secreted via the classical secretory pathway and interacting with cell surface receptors in a paracrine/autocrine fashion, PTHrP appears to be able to enter the nucleus directly following translation and influence cellular events in an “intracrine” fashion. In this report, we demonstrate that PTHrP can be targeted to the nucleus in vascular smooth muscle cells, that this nuclear targeting is associated with a striking increase in mitogenesis, that this nuclear effect on proliferation is the diametric opposite of the effects of PTHrP resulting from interaction with cell surface receptors on vascular smooth muscle cells, and that the regions of the PTHrP sequence responsible for this nuclear targeting represent a classical bipartite nuclear localization signal. This report describes the activation of the cell cycle in association with nuclear localization of PTHrP in any cell type. These findings have important implications for the normal physiology of PTHrP in the many tissues which produce it, and suggest that gene delivery of PTHrP or modified variants may be useful in the management of atherosclerotic vascular disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyclooxygenase-2 (COX-2) is an inducible form of COX and is overexpressed in diverse tumors, raising the possibility of a role for COX-2 in carcinogenesis. In addition, COX-2 contributes to angiogenesis. The Epstein–Barr virus (EBV) oncoprotein, latent membrane protein 1 (LMP1), is detected in at least 70% of nasopharyngeal carcinoma (NPC) and all EBV-infected preinvasive nasopharyngeal lesions. We found that in specimens of LMP1-positive NPC, COX-2 is frequently expressed, whereas LMP1-negative NPC rarely express the enzyme. We next found that expression of LMP1 in EBV-negative nasopharyngeal epithelial cells induced COX-2 expression. Coexpression of IκBα(S32A/S36A), which is not phosphorylated and prevents NF-κB activation, with LMP1 showed that NF-κB is essential for induction of COX-2 by LMP1. We also demonstrate that NF-κB is involved in LMP1-induced cox-2 promoter activity with the use of reporter assays. Two major regions of LMP1, designated CTAR1 and CTAR2, are signal-transducing domains of LMP1. Constructs expressing either CTAR1 or CTAR2 induce COX-2 but to a lesser extent than wild-type LMP1, consistent with the ability of both regions to activate NF-κB. Furthermore, we demonstrate that LMP1-induced COX-2 is functional because LMP1 increased production of prostaglandin E2 in a COX-2-dependent manner. Finally, we demonstrate that LMP1 increased production of vascular endothelial growth factor (VEGF). Treatment of LMP1-expressing cells with the COX-2-specific inhibitor (NS-398) dramatically decreased production of VEGF, suggesting that LMP1-induced VEGF production is mediated, at least in part, by COX-2. These results suggest that COX-2 induction by LMP1 may play a role in angiogenesis in NPC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

IN adult mice, the dominant adhesion molecules involved in homing to lymph nodes are L-selectin homing receptors on lymphocytes and the peripheral lymph node addressins on specialized high endothelial venules. Here we show that, from fetal life through the first 24 hr of life, the dominant adhesion molecules are the mucosal addressin MAdCAM-1 on lymph node high endothelial venules and its counterreceptor, the Peyer's patch homing receptor, integrin alpha 4 beta 7 on circulating cells. Before birth, 40-70% of peripheral blood leukocytes are L-selectin-positive, while only 1-2% expresses alpha 4 beta 7. However, the fetal lymph nodes preferentially attract alpha 4 beta 7-expressing cells, and this can be blocked by fetal administration of anti-MAdCAM-1 antibodies. During fetal and early neonatal life, when only MAdCAM-1 is expressed on high endothelial venules, an unusual subset of CD4 + CD3- cells, exclusively expressing alpha 4 beta 7 as homing receptors, enters the lymph nodes. Beginning 24 hr after birth a developmental switch occurs, and the peripheral node addressins are upregulated on high endothelial venules in peripheral and mesenteric lymph nodes. This switch in addressin expression facilitates tissue-selective lymphocyte migration and mediates a sequential entry of different cell populations into the lymph nodes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Decreased nitric oxide (NO) activity, the formation of reactive oxygen species, and increased endothelial expression of the redox-sensitive vascular cell adhesion molecule 1 (VCAM-1) gene in the vessel wall are early and characteristic features of atherosclerosis. To explore whether these phenomena are functionally interrelated, we tested the hypothesis that redox-sensitive VCAM-1 gene expression is regulated by a NO-sensitive mechanism. In early passaged human umbilical vein endothelial cells and human dermal microvascular endothelial cells, the NO donor diethylamine-NO (DETA-NO, 100 microM) reduced VCAM-1 gene expression induced by the cytokine tumor necrosis factor alpha (TNF-alpha, 100 units/ml) at the cell surface level by 65% and intracellular adhesion molecule 1 (ICAM-1) gene expression by 35%. E-selectin gene expression was not affected. No effect on expression of cell adhesion molecules was observed with DETA alone. Moreover, DETA-NO suppressed TNF-alpha-induced mRNA accumulation of VCAM-1 and TNF-alpha-mediated transcriptional activation of the human VCAM-1 promoter. Conversely, treatment with NG-monomethyl-L-arginine (L-NMMA, 1 mM), an inhibitor of NO synthesis, augmented cytokine induction of VCAM-1 and ICAM-1 mRNA accumulation. By gel mobility shift analysis, DETA-NO inhibited TNF-alpha activation of DNA binding protein activity to the VCAM-1 NF-kappa B like binding sites. Peroxy-fatty acids such as 13-hydroperoxydodecanoeic acid (linoleyl hydroperoxide) may serve as an intracellular signal for NF-kappa B activation. Using thin layer chromatography, DETA-NO (100 microM) suppressed formation of this metabolite, suggesting that DETA-NO modifies the reactivity of oxygen intermediates in the vascular endothelium. Through this mechanism, NO may function as an immunomodulator of the vessel wall and thus mediate inflammatory events involved in the pathogenesis of atherosclerosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.