992 resultados para variant surface glycoprotein (VSG)
Resumo:
Timelapse video microscopy has been used to record the motility and dynamic interactions between an H-2Db-restricted murine cytotoxic T lymphocyte clone (F5) and Db-transfected L929 mouse fibroblasts (LDb) presenting normal or variant antigenic peptides from human influenza nucleoprotein. F5 cells will kill LDb target cells presenting specific antigen (peptide NP68: ASNENMDAM) after “browsing” their surfaces for between 8 min and many hours. Cell death is characterized by abrupt cellular rounding followed by zeiosis (vigorous “boiling” of the cytoplasm and blebbing of the plasma membrane) for 10–20 min, with subsequent cessation of all activity. Departure of cytotoxic T lymphocytes from unkilled target cells is rare, whereas serial killing is sometimes observed. In the absence of antigenic peptide, cytotoxic T lymphocytes browse target cells for much shorter periods, and readily leave to encounter other targets, while never causing target cell death. Two variant antigenic peptides, differing in nonamer position 7 or 8, also act as antigens, albeit with lower efficiency. A third variant peptide NP34 (ASNENMETM), which differs from NP68 in both positions and yet still binds Db, does not stimulate F5 cytotoxicity. Nevertheless, timelapse video analysis shows that NP34 leads to a significant modification of cell behavior, by up-regulating F5–LDb adhesive interactions. These data extend recent studies showing that partial agonists may elicit a subset of the T cell responses associated with full antigen stimulation, by demonstrating that TCR interaction with variant peptide antigens can trigger target cell adhesion and surface exploration without activating the signaling pathway that results in cytotoxicity.
Resumo:
To examine the hypothesis that surface P-selectin-positive (degranulated) platelets are rapidly cleared from the circulation, we developed novel methods for tracking of platelets and measurement of platelet function in vivo. Washed platelets prepared from nonhuman primates (baboons) were labeled with PKH2 (a lipophilic fluorescent dye), thrombin-activated, washed, and reinfused into the same baboons. Three-color whole blood flow cytometry was used to simultaneously (i) identify platelets with a mAb directed against glycoprotein (GP)IIb-IIIa (integrin alpha 11b beta 3), (ii) distinguish infused platelets by their PKH2 fluorescence, and (iii) analyze platelet function with mAbs. Two hours after infusion of autologous thrombin-activated platelets (P-selectin-positive, PKH2-labeled), 95 +/- 1% (mean +/- SEM, n = 5) of the circulating PKH2-labeled platelets had become P-selectin-negative. Compared with platelets not activated with thrombin preinfusion, the recovery of these circulating PKH2-labeled, P-selectin-negative platelets was similar 24 h after infusion and only slightly less 48 h after infusion. The loss of platelet surface P-selectin was fully accounted for by a 67.1 +/- 16.7 ng/ml increase in the plasma concentration of soluble P-selectin. The circulating PKH2-labeled, P-selectin-negative platelets were still able to function in vivo, as determined by their (i) participation in platelet aggregates emerging from a bleeding time wound, (ii) binding to Dacron in an arteriovenous shunt, (iii) binding of mAb PAC1 (directed against the fibrinogen binding site on GPIIb-IIIa), and (iv) generation of procoagulant platelet-derived microparticles. In summary, (i) circulating degranulated platelets rapidly lose surface P-selectin to the plasma pool, but continue to circulate and function; and (ii) we have developed novel three-color whole blood flow cytometric methods for tracking of platelets and measurement of platelet function in vivo.
Resumo:
Parasite-derived proteins expressed on the surface of erythrocytes infected with Plasmodium falciparum are important virulence factors, since they mediate binding of infected cells to diverse receptors on vascular endothelium and are targets of a protective immune response. They are difficult to study because they undergo rapid clonal antigenic variation in vitro, which precludes the derivation of phenotypically homogeneous cultures. Here we have utilized sequence-specific proteases to dissect the role of defined antigenic variants in binding to particular receptors. By selection of protease-resistant subpopulations of parasites on defined receptors we (i) confirm the high rate of antigenic variation in vitro; (ii) demonstrate that a single infected erythrocyte can bind to intercellular adhesion molecule 1, CD36, and thrombospondin; (iii) show that binding to intercellular adhesion molecule 1 and CD36 are functions of the variant antigen; and (iv) suggest that binding to thrombospondin may be mediated by other components of the infected erythrocyte surface.
Resumo:
Hepatitis C virus (HCV) is a major cause of chronic hepatitis. The virus does not replicate efficiently in cell cultures, and it is therefore difficult to assess infection-neutralizing antibodies and to evaluate protective immunity in vitro. To study the binding of the HCV envelope to cell-surface receptors, we developed an assay to assess specific binding of recombinant envelope proteins to human cells and neutralization thereof. HCV recombinant envelope proteins expressed in various systems were incubated with human cells, and binding was assessed by flow cytometry using anti-envelope antibodies. Envelope glycoprotein 2 (E2) expressed in mammalian cells, but not in yeast or insect cells, binds human cells with high affinity (Kd approximately 10(-8) M). We then assessed antibodies able to neutralize E2 binding in the sera of both vaccinated and carrier chimpanzees, as well as in the sera of humans infected with various HCV genotypes. Vaccination with recombinant envelope proteins expressed in mammalian cells elicited high titers of neutralizing antibodies that correlated with protection from HCV challenge. HCV infection does not elicit neutralizing antibodies in most chimpanzees and humans, although low titers of neutralizing antibodies were detectable in a minority of infections. The ability to neutralize binding of E2 derived from the HCV-1 genotype was equally distributed among sera from patients infected with HCV genotypes 1, 2, and 3, demonstrating that binding of E2 is partly independent of E2 hypervariable regions. However, a mouse monoclonal antibody raised against the E2 hypervariable region 1 can partially neutralize binding of E2, indicating that at least two neutralizing epitopes, one of which is hypervariable, should exist on the E2 protein. The neutralization-of-binding assay described will be useful to study protective immunity to HCV infection and for vaccine development.
Resumo:
Glycoprotein D (gD) of herpes simplex virus 1 (HSV-1) is required for stable attachment and penetration of the virus into susceptible cells after initial binding. We derived anti-idiotypic antibodies to the neutralizing monoclonal antibody HD1 to gD of HSV-1. These antibodies have the properties expected of antibodies against a gD receptor. Specifically, they bind to the surface of HEp-2, Vero, and HeLa cells susceptible to HSV infection and specifically react with a Mr 62,000 protein in these and other (143TK- and BHK) cell lines. They neutralize virion infectivity, drastically decrease plaque formation by impairing cell-to-cell spread of virions, and reduce polykaryocytosis induced by strain HFEM, which carries a syncytial (syn-) mutation. They do not affect HSV growth in a single-step cycle and plaque formation by an unrelated virus, indicating that they specifically affect the interaction of HSV gD) with a cell surface receptor. We conclude that the Mr 62,000 cell surface protein interacts with gD to enable spread of HSV-1 from cell to cell and virus-induced polykaryocytosis.
Resumo:
Evasion of host immunity by Toxocara canis infective larvae is mediated by the nematode surface coat, which is shed in response to binding by host antibody molecules or effector cells. The major constituent of the coat is the TES-120 glycoprotein series. We have isolated a 730-bp cDNA from the gene encoding the apoprotein precursor of TES-120. The mRNA is absent from T. canis adults but hyperabundant in larvae, making up approximately 10% of total mRNA, and is trans-spliced with the nematode 5' leader sequence SL1. It encodes a 15.8-kDa protein (after signal peptide removal) containing a typical mucin domain: 86 amino acid residues, 72.1% of which are Ser or Thr, organized into an array of heptameric repeats, interspersed with proline residues. At the C-terminal end of the putative protein are two 36-amino acid repeats containing six Cys residues, in a motif that can also be identified in several genes in Caenorhabditis elegans. Although TES-120 displays size and charge heterogeneity, there is a single copy gene and a homogeneous size of mRNA. The association of overexpression of some membrane-associated mucins with immunosuppression and tumor metastasis suggests a possible model for the role of the surface coat in immune evasion by parasitic nematodes.
Resumo:
Nerve cells depend on specific interactions with glial cells for proper function. Myelinating glial cells are thought to associate with neuronal axons, in part, via the cell-surface adhesion protein, myelin-associated glycoprotein (MAG). MAG is also thought to be a major inhibitor of neurite outgrowth (axon regeneration) in the adult central nervous system. Primary structure and in vitro function place MAG in an immunoglobulin-related family of sialic acid-binding lactins. We report that a limited set of structurally related gangliosides, known to be expressed on myelinated neurons in vivo, are ligands for MAG. When major brain gangliosides were adsorbed as artificial membranes on plastic microwells, only GT1b and GD1a supported cell adhesion of MAG-transfected COS-1 cells. Furthermore, a quantitatively minor ganglioside expressed on cholinergic neurons, GQ1b alpha (also known as Chol-1 alpha-b), was much more potent than GT1b or GD1a in supporting MAG-mediated cell adhesion. Adhesion to either GT1b or GQ1b alpha was abolished by pretreatment of the adsorbed gangliosides with neuraminidase. On the basis of structure-function studies of 19 test glycosphingolipids, an alpha 2,3-N-acetylneuraminic acid residue on the terminal galactose of a gangliotetraose core is necessary for MAG binding, and additional sialic acid residues linked to the other neutral core saccharides [Gal(II) and GalNAc(III)] contribute significantly to binding affinity. MAG-mediated adhesion to gangliosides was blocked by pretreatment of the MAG-transfected COS-1 cells with anti-MAG monoclonal antibody 513, which is known to inhibit oligodendrocyte-neuron binding. These data are consistent with the conclusion that MAG-mediated cell-cell interactions involve MAG-ganglioside recognition and binding.
Resumo:
Nerve growth cones isolated from fetal rat brain are highly enriched in a 97-kDa glycoprotein, termed beta gc, that comigrates with the beta subunit of the IGF-I receptor upon two-dimensional PAGE and is disulfide-linked to this receptor's alpha subunit. Antibodies prepared to a conserved domain shared by the insulin and IGF-I receptor beta subunits (AbP2) or to beta gc were used to study receptor distribution further. Subcellular fractionation of the fetal brain segregated most AbP2 immunoreactivity away from growth cones, whereas most beta gc immunoreactivity copurified with growth cones. Experiments involving ligand-activated receptor autophosphorylation confirmed the concentration of IGF-I but not of insulin receptors in growth cone fractions. These results indicate the enrichment of IGF-I receptors in (presumably axonal) growth cones of the differentiating neuron. Furthermore, the segregation of beta gc from AbP2 immunoreactivity suggests that such neurons express an immunochemically distinct variant of the IGF-I receptor beta subunit at the growth cone.
Resumo:
Casein is a major protein in cow's milk that occurs in several variant forms, two of which are beta-casein A(1) and beta-casein A(2). The levels of these two proteins vary considerably in milk dependent on the breed of cow, and epidemiology studies suggest that there is a relationship between their consumption and the degree of atherosclerosis. In the present study, the direct effect of consumption of beta-casein A(1) vs beta-casein A(2) on atherosclerosis development was examined in a rabbit model. Sixty rabbits had their right carotid artery balloon de-endothelialised at t = 0, divided randomly into 10 groups (n = 6 per group), then for 6 weeks fed a diet containing 0, 5, 10 or 20% casein isolate, either beta-casein variant A(1) or A(2) made up to 20% milk protein with whey. Some groups had their diets supplemented with 0.5% cholesterol. Blood samples were collected at t = 0, 3 and 6 weeks and rabbits were sacrificed at t = 6 weeks. In the absence of dietary cholesterol, beta-casein A(1) produced significantly higher (P < 0.05) serum cholesterol, LDL, HDL and triglyceride levels than whey diet alone, which in turn produced higher levels than beta-casein A(2). Rabbits fed beta-casein A(1) had a higher percent surface area of aorta covered by fatty streaks than those fed beta-casein A(2) (5.2+/-0.81 vs 1.1+/-0.39, P < 0.05) and the thickness of the fatty streak lesions in the aortic arch was significantly higher (0.04+/-0.010 vs 0.00, P < 0.05). Similarly, the intima to media ratio (I:M) of the balloon injured carotid arteries in A(1) fed animals (0.77+/-0.07) was higher than in those that consumed A(2) (0.57+/-0.04) or whey (0.58+/-0.04), but this did not reach significance. In the presence of 0.5% dietary cholesterol, the thickness of the aortic arch lesions was higher (P < 0.05) in 5, 10 and 20% casein A(1) fed animals compared with their A(2) counterparts, while other parameters were not significantly different. It is concluded that beta-casein A(1)is atherogenic compared with beta-casein A(2). (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Transient expression of Ebola virus (EBOV) glycoprotein GP causes downregulation of surface proteins, cell rounding and detachment, a phenomenon believed to play a central role in the pathogenicity of the virus. In this study, evidence that moderate expression of GP does not result in such morphological changes was provided. It was shown that GP continuously produced in 293T cells from the Kunjin virus replicon was correctly processed and transported to the plasma membrane without affecting the surface expression of beta 1 and alpha 5 integrins and major histocompatibility complex I molecules. The level of GIP expression in Kunjin replicon GP-expressing cells was similar to that observed in cells infected with EBOV early in infection and lower than that produced in cells transfected with plasmid DNA, phCMV-GP(1) expressing GP from a strong promoter. Importantly, transient transfection of Kunjin replicon GIP-expressing cells with GIP-coding plasmid DNA resulted in overexpression of GP, which lead to the downregulation of surface molecules and massive rounding and detachment of transfected cells. Here, it was also demonstrated that cell rounding and downregulation of the surface markers are the late events in EBOV infection, whereas synthesis and massive release of virus particles occur at early steps and do not cause significant cytotoxic effects. These findings indicate that the synthesis of EBOV GP in virus-infected cells is controlled well by several mechanisms that do not allow GP overexpression and hence the early appearance of its cytotoxic properties.
Resumo:
Genes for peripheral tissue-restricted self-antigens are expressed in thymic and hematopoietic cells. In thymic medullary epithelial cells, self-antigen expression imposes selection on developing autoreactive T cells and regulates susceptibility to autoimmune disease in mouse models. Less is known about the role of self-antigen expression by hematopoietic cells. Here we demonstrate that one of the endocrine self-antigens expressed by human blood myeloid cells, proinsulin, is encoded by an RNA splice variant. The surface expression of immunoreactive proinsulin was significantly decreased after transfection of monocytes with small interfering RNA to proinsulin. Furthermore, analogous to proinsulin transcripts in the thymus, the abundance of the proinsulin RNA splice variant in blood cells corresponded with the length of the variable number of tandem repeats 5' of the proinsulin gene, known to be associated with type 1 diabetes susceptibility. Self-antigen expression by peripheral myeloid cells extends the umbrella of immunological self and, by analogy with the thymus, may be implicated in peripheral immune tolerance.
Resumo:
Deposition of insoluble prion protein (PrP) in the brain in the form of protein aggregates or deposits is characteristic of the ‘transmissible spongiform encephalopathies’ (TSEs). Understanding the growth and development of these PrP aggregates is important both in attempting to the elucidate of the pathogenesis of prion disease and in the development of treatments designed to prevent or inhibit the spread of prion pathology within the brain. Aggregation and disaggregation of proteins and the diffusion of substances into the developing aggregates (surface diffusion) are important factors in the development of protein aggregates. Mathematical models suggest that if aggregation/disaggregation or surface diffusion is the predominant factor, the size frequency distribution of the resulting protein aggregates in the brain should be described by either a power-law or a log-normal model respectively. This study tested this hypothesis for two different types of PrP deposit, viz., the diffuse and florid-type PrP deposits in patients with variant Creutzfeldt-Jakob disease (vCJD). The size distributions of the florid and diffuse plaques were fitted by a power-law function in 100% and 42% of brain areas studied respectively. By contrast, the size distributions of both types of plaque deviated significantly from a log-normal model in all brain areas. Hence, protein aggregation and disaggregation may be the predominant factor in the development of the florid plaques. A more complex combination of factors appears to be involved in the pathogenesis of the diffuse plaques. These results may be useful in the design of treatments to inhibit the development of protein aggregates in vCJD.
Resumo:
TThe size frequency distributions of ß-amyloid (Aß) and prion protein (PrPsc) deposits were studied in Alzheimer’s disease (AD) and the variant form of Creutzfeldt-Jakob disease (vCJD) respectively. All size distributions were unimodal and positively skewed. Aß deposits reached a greater maximum size and their distributions were significantly less skewed than the PrPsc deposits. All distributions were approximately log-normal in shape but only the diffuse PrPsc deposits did not deviate significantly from a log-normal model. There were fewer larger classic Aß deposits than predicted and the florid PrPsc deposits occupied a more restricted size range than predicted by a log-normal model. Hence, Aß deposits exhibit greater growth than the corresponding PrPsc deposits. Surface diffusion may be particularly important in determining the growth of the diffuse PrPsc deposits. In addition, there are factors limiting the maximum size of the Aß and florid PrPsc deposits.
Resumo:
The objective was to test the hypothesis that the size frequency distributions of the prion protein (PrP) plaques in cases of variant Creutzfeldt-Jakob disease (vCJD) follow a power-law function. The design was a retrospective neuropathological study. The patients were 11 cases of clinically and neuropathologically verified vCJD. Size distributions of the diffuse and florid-type plaques were measured in several areas of the cerebral cortex and hippocampus from each case and a power-law function fitted to each distribution. The size distributions of the florid and diffuse plaques were fitted successfully by a powerlaw function in 100% and 42% of brain areas investigated respectively. Processes of aggregation/disaggregation may be more important than surface diffusion in the pathogenesis of the florid plaques. By contrast, surface diffusion may be a more significant factor in the development of the diffuse plaques. © Springer-Verlag Italia 2006.
Resumo:
Deposition of insoluble prion protein (PrP) in the brain in the form of protein aggregates or deposits is characteristic of the ‘transmissible spongiform encephalopathies’ (TSEs). Understanding the growth and development of PrP aggregates is important both in attempting to elucidate the pathogenesis of prion disease and in the development of treatments designed to inhibit the spread of prion pathology within the brain. Aggregation and disaggregation of proteins and the diffusion of substances into the developing aggregates (surface diffusion) are important factors in the development of protein deposits. Mathematical models suggest that if either aggregation/disaggregation or surface diffusion is the predominant factor, then the size frequency distribution of the resulting protein aggregates will be described by either a power-law or a log-normal model respectively. This study tested this hypothesis for two different populations of PrP deposit, viz., the diffuse and florid-type PrP deposits characteristic of patients with variant Creutzfeldt-Jakob disease (vCJD). The size distributions of the florid and diffuse deposits were fitted by a power-law function in 100% and 42% of brain areas studied respectively. By contrast, the size distributions of both types of aggregate deviated significantly from a log-normal model in all areas. Hence, protein aggregation and disaggregation may be the predominant factor in the development of the florid deposits. A more complex combination of factors appears to be involved in the pathogenesis of the diffuse deposits. These results may be useful in the design of treatments to inhibit the development of PrP aggregates in vCJD.